
ARC labs handbook
Release 2018.09

Synopsys

2023

Contents:

1 Overview 1
1.1 Introduction . 1
1.2 Supported Hardware Platform . 2
1.3 Reference . 2

2 Getting Started 3
2.1 Software Requirement . 3
2.2 Install Software Tools . 4
2.3 Final Check . 7
2.4 Learn More . 7

3 Hands-on labs 9
3.1 Basic labs . 9
3.2 Advanced labs . 49
3.3 Exploration . 85

4 Appendix 93
4.1 Reference . 93

5 Indices and tables 95

i

ii

CHAPTER 1

Overview

1.1 Introduction

This is a handbook for ARC labs which is a part of ARC university courses. The handbook is written to help
students who attend the ARC university course. Anyone interested in DesignWare® ARC® processors can also
take this handbook as a quick start-up to get started in DesignWare® ARC® processors development. In this
handbook, all the basic elements of ARC are described in the labs with a step-by-step approach.

This handbook can be used as a Lab teaching material for ARC university courses at undergraduate or gradu-
ate level with majors in Computer Science, Computer Engineering, Electrical Engineering, or for professional
engineers.

This handbook includes a series of labs (more labs will be added in the future), which are roughly classified into
3 levels:

• Level 1: ARC basic

The labs in this level cover the basic topics of DesignWare® ARC® processors. For example, the installation
and usage of hardware and software tools, software or hardware development kits, the first hello world example,
interrupt handling and internal timers of DesignWare® ARC® processors, and so on.

• Level 2: ARC advanced

The labs in this level cover the advanced topics of DesignWare® ARC® processors. For example, Real-Time
Operating System (RTOS), customized linkage, compiler optimization, basic applications, DesignWare® ARC®
processors DSP feature, and so on.

• Level 3: ARC exploration

The labs in this level cover some complex applications of DesignWare® ARC® processors. For example, Internet
of Things (IoT) application, embedded machine learning, and so on.

Most of the labs are based on the embARC Open Software Platform (OSP) which is an open software platform to
facilitate the development of embedded systems based on DesignWare® ARC® processors.

It is designed to provide a unified platform for DesignWare® ARC® processors users by defining consistent and
simple software interfaces to the processor and peripherals together with ports of several well known Free and
open-source software (FOSS) embedded software stacks to DesignWare® ARC® processors.

For more details about embARC OSP, please see its online docs.

1

https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_osp
http://embarc.org/embarc_osp/

ARC labs handbook, Release 2018.09

1.2 Supported Hardware Platform

The following DesignWare® ARC® processors based hardware platforms are supported in this handbook.

• ARC EM Starter Kit

• ARC IoT Development Kit

You can click the above links to get the platform’s data sheet and user manual as a reference.

1.3 Reference

Item Name
1 ARC EM Databook
2 MetaWare docs
3 ARC EM Starter Kit User Guide
4 ARC GNU docs

2 Chapter 1. Overview

https://www.synopsys.com/dw/ipdir.php?ds=arc_em_starter_kit
https://www.synopsys.com/dw/ipdir.php?ds=arc_iot_development_kit

CHAPTER 2

Getting Started

Use this guide to get started with your ARC labs development.

2.1 Software Requirement

• ARC Development Tools Select MetaWare Development Toolkit or GNU Toolchain for ARC Processors
from the following list according to your requirement.

– MetaWare Development Toolkit

* Premium MetaWare Development Toolkit (2018.06). The DesignWare ARC MetaWare Develop-
ment Toolkit builds upon a 25-year legacy of industry-leading compiler and debugger products.
It is a complete solution that contains all the components needed to support the development,
debugging, and tuning of embedded applications for the DesignWare ARC processors.

* DesignWare ARC MetaWare Toolkit Lite (2018.06). A demonstration or evaluation version of
the MetaWare Development Toolkit is available for free from the Synopsys website. MetaWare
Lite is a functioning demonstration of the MetaWare Development Toolkit with restrictions such
as code-size limit of 32 Kilobytes and no runtime library sources. It is available for Microsoft
Windows only.

– GNU Toolchain for ARC Processors

* Open Source ARC GNU IDE (2018.03). The GNU Toolchain for ARC Processors offers all of
the benefits of open source tools such as complete source code and a large install base. The
ARC GNU IDE Installer consists of Eclipse IDE with ARC GNU plugin for Eclipse, ARC GNU
prebuilt toolchain, and OpenOCD for ARC.

• Digilent Adept Software for Digilent JTAG-USB cable driver. All the supported boards are equipped with
on board USB-JTAG debugger. One USB cable is required and external debugger is not required.

• Tera Term or PuTTY for serial terminal connection. The serial configurations are 115200 baud, 8 bits data,
1 stop bit, and no parity (115200-8-N-1) by default.

Note: If using embARC with GNU toolchain on Windows, please install Zadig to replace FTDI driver with
WinUSB driver. See How to Use OpenOCD on Windows for more information. If you want to switch back to
Metaware toolchain, make sure you switch back the usb-jtag driver from WinUSB to FTDI driver.

3

https://www.synopsys.com/designware-ip/processor-solutions/arc-processors/arc-development-tools.html
https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
https://www.synopsys.com/dw/ipdir.php?ds=sw_metaware
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/foss-for-synopsys-dwc-arc-processors/arc_gnu_eclipse/releases
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
https://github.com/foss-for-synopsys-dwc-arc-processors/openocd
https://store.digilentinc.com/digilent-adept-2-download-only/
http://ttssh2.osdn.jp/
https://www.putty.org/
http://zadig.akeo.ie
https://github.com/foss-for-synopsys-dwc-arc-processors/arc_gnu_eclipse/wiki/How-to-Use-OpenOCD-on-Windows

ARC labs handbook, Release 2018.09

2.2 Install Software Tools

2.2.1 Install MetaWare Development Toolkit

Installing MetaWare Development Toolkit (2017.09).

1. Double click the mw_dekit_arc_i_2017_09_win_install.exe and click Next.

2. Select I accept and click Next.

3. Select Typical installation and click Next.

4 Chapter 2. Getting Started

ARC labs handbook, Release 2018.09

4. Set the install path (make sure you use English letters without any space) and click Next until the installation
is complete.

5. Set the license file (SNPSLMD_LICENSE_FILE) for MetaWare Development Toolkit. It can be a real file
containing license or a license server.

• For Windows, go to Computer > Properties > Advanced > Environment Variables > System Variables
> New.

2.2. Install Software Tools 5

ARC labs handbook, Release 2018.09

• For Linux, add SNPSLMD_LICENSE_FILE into your system variables.

6. Test the MetaWare Development Toolkit and the license

At the command prompt, compile and link in one step.

For example, find the queens.c in the demos folder of MetaWare Development Toolkit installation directory.

On Windows
cd C:\ARC\MetaWare\arc\demos
ccac queens.c

If you get the following message without any error, then the MetaWare Development Toolkit is successfully
installed.

MetaWare C Compiler N-2017.09 (build 005) Serial 1-799999.
(c) Copyright 1987-2017, Synopsys, Inc.
MetaWare ARC Assembler N-2017.09 (build 005)
(c) Copyright 1996-2017, Synopsys, Inc.
MetaWare Linker (ELF/ARCompact) N-2017.09 (build 005)
(c) Copyright 1995-2017, Synopsys, Inc.

2.2.2 Install GNU Toolchain for ARC Processors

Click (https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases) to get the latest version of
GNU Toolchain for ARC Processors.

To use and install GNU Toolchain for ARC Processors, please see (http://embarc.org/toolchain/ide/index.html).

It is recommended to install GNU Toolchain for ARC Processors in the path (windows: C:\arc_gnu\, linux:
~/arc_gnu/) and add arc_gnu/bin into $PATH variable.

2.2.3 Install embARC OSP

The embARC OSP source code is hosted in a GitHub repository that supports cloning through git. There are
scripts in this repo that you are need to set up your development environment, and Git is used to get this repo. If
you do not have Git installed, see the beginning of the OS-specific instructions below for help.

Using Git to clone the repository anonymously

On Windows
cd %userprofile%
On Linux
cd ~

git clone https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_osp.git
→˓embarc_osp

You have successfully checked out a copy of the source code to your local machine.

2.2.4 Install ARC labs code

The source codes of ARC labs are assumed to work with embARC OSP. Please use git to clone or download
the ARC labs to the root folder of embARC OSP. If the download is successful, the following folder structure is
displayed:

cd path/to/embarc_osp
git clone https://github.com/foss-for-synopsys-dwc-arc-processors/arc_labs.git arc_
→˓labs

6 Chapter 2. Getting Started

https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases
http://embarc.org/toolchain/ide/index.html

ARC labs handbook, Release 2018.09

embarc_osp
arc
board
device
doc
example
arc_labs
inc
library
middleware
options
os

2.3 Final Check

Check the following items and set development environment.

• Make sure the paths of MetaWare Development Toolkit or GNU Toolchain for ARC Processors are added
to the system variable PATH in your environment variables.

• It is recommended to install GNU Toolchain for ARC Processors to default location. Otherwise, you need
to make additional changes as described.

– If running and debugging embARC applications using arc-elf32-gdb and OpenOCD for ARC, make
sure the path of OpenOCD is added to the PATH in your environment variables and modify
OPENOCD_SCRIPT_ROOT variable in <embARC>/options/toolchain/toolchain_gnu.mk to your
OpenOCD root path.

– If running GNU program with using the GNU toolchain on Linux, modify the OpenOCD configura-
tion file as Linux format with LF line terminators. dos2unix can be used to convert it.

Note: Check the version of your toolchain. The embARC OSP software build system is makefile-based.
make/gmake is provided in the MetaWare Development Toolkit (gmake) and GNU Toolchain for ARC Proces-
sors (make)

2.4 Learn More

For more details about embARC OSP, see online docs

2.3. Final Check 7

https://github.com/foss-for-synopsys-dwc-arc-processors/openocd
http://embarc.org/embarc_osp/

ARC labs handbook, Release 2018.09

8 Chapter 2. Getting Started

CHAPTER 3

Hands-on labs

3.1 Basic labs

3.1.1 How to use ARC IDE

MetaWare Development Toolkit

Purpose

• To learn MetaWare Development Toolkit

• To get familiar with the basic usage of the MetaWare Development Toolkit

• To get familiar with the features and usage of the MetaWare Debugger (mdb)

Requirements

The following hardware and tools are required:

• PC host

• MetaWare Development Toolkit

• nSIM simulator or ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/lab_core_test

Content

• Create a C project using the MetaWare Development Toolkit

• Import the code CoreTest.c from embarc_osp/arc_labs/labs/lab_core_test

• Configure compilation options to compile, and generate executable files.

• Start the debugger of MetaWare Development Toolkit and enter debug mode.

9

ARC labs handbook, Release 2018.09

From two different perspectives of C language and assembly language, use the methods of setting breakpoint,
single-step execution, full-speed executions, etc., combined with observing PC address, register status, global
variable status, and profiling performance to analyze and debug the target program.

Principles

Use the MetaWare Development Toolkit to create projects and load code. In the engineering unit, configure the
compilation options to compile code, debug, and analyze the compiled executable file.

Routine code CoreTest.c:

///
// This small demo program finds the data point that is the
// minimal distance from x and y [here arbitrarily defined to be (4,5)]
//
// #define/undefine '_DEBUG' precompiler variable to obtain
// desired functionality. Including _DEBUG will bring in the
// I/O library to print results of the search.
//
// For purposes of simplicity, the data points used in the computations
// are hardcoded into the POINTX and POINTY constant values below
///

#ifdef _DEBUG
#include "stdio.h"
#endif

#define POINTX {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
#define POINTY {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
#define POINTS 10

#define GetError(x, y, Px, Py) \
((x-Px)*(x-Px) + (y-Py)*(y-Py))

int main(int argc, char* argv[]) {
int pPointX[] = POINTX;
int pPointY[] = POINTY;

int x, y;
int index, error, minindex, minerror;

x = 4;
y = 5;

minerror = GetError(x, y, pPointX[0], pPointY[0]);
minindex = 0;

for(index = 1; index < POINTS; index++) {
error = GetError(x, y, pPointX[index], pPointY[index]);

if (error < minerror) {
minerror = error;
minindex = index;

}
}

#ifdef _DEBUG
printf("minindex = %d, minerror = %d.\n", minindex, minerror);
printf("The point is (%d, %d).\n", pPointX[minindex], pPointY[minindex]);
getchar();

(continues on next page)

10 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

#endif

return 0;
}

Steps

1. Create a project

Open the MetaWare Development Toolkit, create an empty project called demo, and select the ARC EM Generic
processor.

2. Import the code file CoreTest.c to the project demo.

In the Project Explorer, click and select Import.

In the Implort wizard, select File system from the General tab, then click Next. As shown in the following figure,
in the From directory fileld, type or browse to select the directory contain the file CoreTest.c. Recent directories
that have been imported from are shown on the From directory field’s combo box. In the left pane, check a folder
that will import its entire contents into the Workbench, and in the right pane check the file CoreTest.c.

3.1. Basic labs 11

ARC labs handbook, Release 2018.09

Click Finish when done, the file CoreTest.c is now shown in the one of the navigation views in the project demo.

3. Set compilation options

From the Project Explorer view, right-click the project demo and choose Properties. Click C/C++ Build > Set-
tings > Tool Settings menu options. The Tool Settings dialog opens.

12 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Select Optimization/Debugging to set the compiler optimization and debugging level. For example, set the
optimization level to turn off optimization, and set the debugging level to load all debugging information.

Select Processor/Extensions to set the compilation options corresponding to the target processor hardware prop-
erties, such as the version of the processor, whether to support extended instructions such as shift, multiplication,
floating-point operations, and so on whether to include Timer0/1. As shown in the following figure, this setting
indicates that the target processor supports common extended instructions.

Select MetaWare ARC EM C/C++ and check the settings compilation options. Click OK when done.

4. Build project

In the Project Explorer view, select project demo. Click Project > Build Project or click the icon on
the toolbar. In the MetaWare Development Toolkit main interface, you can see in the Console view the output
and results of the build command. Click on its tab to bring the view forward if it is not currently visible. If for
some reason it’s not present, you can open it by selecting Window > Show View > Console. When the message
Finished building target: demo.elf is displayed, the compilation is successful, and the compiled
executable file demo.elf can be seen in the Project Explorer.

3.1. Basic labs 13

ARC labs handbook, Release 2018.09

5. Set debug options

Click the Run > Debug Configurations. . . menu option to open the Debug Configurations dialog. Double-click
C/C++ Application or right-click New to create a new launch configuration.

If a project is selected in the Project Explorer view all data is automatically entered, take a moment to verify its
accuracy or change as needed. Here you do not need to make any changes, just click Debug to enter the debugging
interface.

6. Debug executable file demo.elf

You may be prompted to switch to the Debug perspective. Click Yes.

The Debug perspective appears with the required windows open. And the windows can be source code window,
assembly code window, register window, global variable window, breakpoint window, function window, and so
on.

14 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

In the C code window, right-click the code line number on the left side of the window, select Toggle Breakpoint
or double-click the line number to set a breakpoint on. In the assembly code window, double-click a line of code
to set a breakpoint on. You’ll see a blue circle there indicating the breakpoint is set.

After the breakpoint is set, click Run > Resume or you can use the Resume button on the toolbar of the
Debug view to run the program. The program runs directly to the nearest breakpoint. You can observe the
current program execution and the relevant status information of the processor through the various windows as
described in previous step. If you want to know more about the details of program execution and the instruction
behavior of the processor, you can use the following three execution commands to perform single-
step debugging. The icon can choose to step through a C language statement or an assembly instruction to
match the status information of each window. It can be very convenient for program debugging. If you want to
end the current debugging process, click . If you want to return to the main MetaWare Development Toolkit
page, click C/C++ .

7. Code performance analysis using the debugger

Based on the previous project demo, open the Compile Options dialog box in step 3 and set the Optimization

Level to -O0 in the Optimization/Debugging column. Then click to recompile the project, and click to
enter the debugging interface. Click Debugger in the main menu of the debugging interface, select Disassembly
from the menu drop-down menu, open the disassembly code window, and you can see that the program is paused
at the entrance of the main() function. In the same way, select Profiling in the Debugger drop-down menu, open
the performance analysis window and click .

3.1. Basic labs 15

ARC labs handbook, Release 2018.09

The Profiling window displays the corresponding of the number of executed instructions of the program with
each function under the current debug window. From left to right, the total number of executions of function
instructions in the total number of executions of the entire program instruction, the total number of executions of
the accumulated instructions, the total number of executions of the functions, the number of times the function is
called, the number of including functions, the address of the function, and the name of the function. Through the
relationship between the instruction information and the function in the Profiling window, it is very convenient to
analyze the program efficiency and find the shortcoming of the program performance.

Use this project as an example to continue to introduce the use of the Profiling window. The program is paused
at the entrance of the main() function and the Profiling window opens. The main() function is the main object of
performance analysis optimization. The content displayed in the Profiling window is some function information
initialized by the processor before the main() function is executed. Click in the Profiling window to clear the
current information. If you click , nothing is displayed, and it indicates that the cleaning is successful. Set
a breakpoint at the last statement of the main() function (either C statement or assembly statement), and click

in the toolbar above the debug interface to let the program run until it hits the breakpoint. Click in the
Profiling window, and only the information related to the main() function is displayed. Therefore, flexible setting
of breakpoints, combined with the clear function, can perform performance analysis on the concerned blocks.

It can be seen that the multiplication library function _mw_mpy_32x32y32 in the main() function is called 20

16 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

times, and a total of 2064 instructions are executed, while the main() function itself executes only 326 instructions,
and the memcpy function executes 86 instructions. It can be seen that the implementation of the multiplication
function of the program consumes a large number of instructions, and the large number of instructions means
that the processor spends a large number of computation cycles to perform multiplication operations. Therefore,
multiplication is the shortcoming of current program performance. If you want to improve the performance of the
program, you should consider how you can use fewer instructions and implement multiplication more efficiently.

Exercises

Enable MPY extension instrctions by setting Multiply Option -Xmpy_option = wlh1 in step 3, it implements
multiplication more efficiently with fewer instructions. Redo steps 4 - 7 to analyze with the debugger’s Profiling
function, observe the total number of instructions consumed by the main function, and compare it with the above
Profiling result.

GNU Toolchain for ARC Processors

Purpose

• Learn the GNU Toolchain for ARC Processors

• Familiar with the GNU Toolchain for ARC Processors

• Familiar with the functions and usage of the GNU Toolchain for ARC Processors debugger

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors

• nSIM simulator or ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/lab_core_test

Content

• Create a C project using GNU Toolchain for ARC Processors

• Import the code CoreTest.c from embarc_osp/arc_labs/labs/lab_core_test

• Configure compilation options to compile, and generate executable files

• Start the GNU Toolchain for ARC Processors debugger to enter the debug mode

From two different perspectives of C language and assembly language, use the methods of setting breakpoint,
single-step execution, full-speed executions, and so on combined with observing PC address, register status, global
variable status, and profiling performance to analyze and debug the target program.

Principles

Use the GNU Toolchain for ARC Processors integrated development environment to create projects and load
routine code. In the engineering unit, configure the compile option compilation routine code to debug and analyze
the compiled executable file.

3.1. Basic labs 17

ARC labs handbook, Release 2018.09

Steps

1. Create a project

Open the GNU Toolchain for ARC Processors, create an empty project called core_test, and select ARC EM
series processor.

2. Import the code file CoreTest.c to the project demo

In the Project Explorer, right-click , and select Import..

In the Implort wizard, select File system from the General tab, then click Next. As shown in the following figure,
in the From directory fileld, type or browse to select the directory contain the file CoreTest.c. Recent directories
that have been imported from are shown on the From directory field’s combo box. In the left pane, check a folder
that imports the contents into the Workbench, and in the right pane check the file CoreTest.c.

18 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Click Finish when done, the file CoreTest.c is now shown in the one of the navigation views in the project
core_test.

3. Set compilation options

From the Project Explorer view, right-click the project core_test and choose Properties. Click C/C++ Build
> Settings > Tool Settings. The Tool Settings dialog opens.

3.1. Basic labs 19

ARC labs handbook, Release 2018.09

Select Debugging to set the compiler optimization and debugging level. For example, set the optimization level
to off optimization, and the debugging level is to load all debugging information.

Select Processor in the current interface to set the compile options corresponding to the target processor hardware
attributes, such as the version of the processor, whether to support extended instructions such as shift, multiplica-
tion, floating-point operations, and so on whether to include Timer0/1.

In step 1, you built the project using the engineering template of EMSK, the corresponding necessary options have
been set by default. If there is no special requirement, check the setting compile options in the All options column
and click OK when done.

4. Build project

In the Project Explorer view, select project core_test.

Click Project > Build Project or click . In the middle of the GNU Toolchain for ARC Processors main
interface, you can see in the Console view the output and results of the build command. Click the tab to bring
the view forward if it is not currently visible. If for some reason it is not present, you can open it by selecting
Window > Show View > Console. When the message Finished building target: Core_test.
elf is displayed, the compilation is successful, and the compiled executable file Core_test.elf can be seen in the
Project Explorer.

20 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

5. Set debugger options

Click the Run > Debug Configurations. . . menu option to open the Debug Configurations dialog. Double-click
C/C++ Application or right-click New to create a new launch configuration.

If a project is selected in the Project Explorer view all data is automatically entered, take a moment to verify its
accuracy or change as needed. As you use nSIM simulator to simulate EMSK development board, you need to
modify the settings of Debugger, Common, and Terminal (this is because nSIM cannot be called directly in GNU
IDE. Still needs GDB Server for indirect calls). The specific settings are as follows:

• Set Debugger->Gdbserver Settings

3.1. Basic labs 21

ARC labs handbook, Release 2018.09

Select nSIM as the ARC GDB Server, and the default port number is 49105. Note that Use TCF is en-
abled. Otherwise, the nSIM cannot work normally. The TCF start file is under nSIM/nSIM/etc/tcf/templates
(the default installation path). If you have downloaded the MetaWare IDE, the default nSIM path is
C:/ARC/nSIM/nSIM/etc/tcf/templates, and you can select a TCF file from this folder (depending on the version of
the board you are simulating and the kernel model), as shown earlier.

• Pay attention to Debug in Common

• Terminal settings

If you are using the EM Starter Kit, the terminal automatically selects the correct port number, and if you are using
the emulator without a port, uncheck it as shown in the following figure.

22 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

When you are done, click Debug to enter the debugging interface.

6. Debug executable file core_test.elf

You may be prompted to switch to the Debug perspective. Click Yes.

The Debug perspective appears with the source code window, assembly code window, register window, global
variable window, breakpoint window, function window, and so on.

In the C code window, right-click the code line number on the left side of the window, select Toggle Breakpoint
or double-click the line number to set a breakpoint on. In the assembly code window, double-click a line of code
to set a breakpoint on. A blue circle is seen indicating the breakpoint is set.

After the breakpoint is set, click Run > Resume or you can use the Resume button on the toolbar of the
Debug view to run the program. The program runs directly to the nearest breakpoint. You can observe the current
program execution and the relevant status information of the processor through the various windows as described in
previous step. If you want to know more about the details of program execution and the instruction behavior of the
processor, you can use the following three execution commands to perform single-step debugging.
The icon can choose to step through a C language statement or an assembly instruction to match the status
information of each window. It can be very convenient for program debugging. If you want to end the current
debugging process, click . If you want to return to the main GNU Toolchain for ARC Processors page, click

3.1. Basic labs 23

ARC labs handbook, Release 2018.09

C/C++ .

7. Code performance analysis using the debugger

Same as the code performance analysis method of MetaWare Development Toolkit.

For the use of these two IDEs, you can refer to the Help documentation in the respective IDE, or you can view the
on-line documentation provided by Synopsys.

3.1.2 How to use embARC OSP

Purpose

• To know the concept of embARC OSP

• To know how to run examples in embARC OSP

• To know how to debug the examples in embARC OSP

• To know how to create application in embARC OSP

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embARC OSP packages

For the detailed tool requirements of embARC OSP, see Software Requirement.

Content

• A brief introduction of embARC OSP

• Get embARC OSP and run and debug the provided examples

• Create an embARC OSP application

Principles

1. IoT OS/Platform

As more and more devices are connected and become more complex, the tools running in them are becoming
more and more complex.

An IoT OS is an operating system that is designed to perform within the constraints that are particular to Internet
of Things devices, including restrictions on memory, size, power, and processing capacity. IoT operating systems
are a type of embedded OS but by definition are designed to enable data transfer over the Internet and more other
features.

2. embARC OSP

The embARC OSP is an open software platform to facilitate the development of embedded systems based on
DesignWare® ARC® processors.

It is designed to provide a unified platform for DesignWare® ARC® processors users by defining consistent
and simple software interfaces to the processor and peripherals, together with ports of several well known FOSS
embedded software stacks to DesignWare® ARC® processors.

For more details, see embARC OSP online documentation

24 Chapter 3. Hands-on labs

http://embarc.org/embarc_osp/doc/build/html/getting_started/software_requirement.html
http://embarc.org/embarc_osp/doc/build/html/introduction/introduction.html

ARC labs handbook, Release 2018.09

3. Other platforms

Besides embARC OSP, there are also other IoT platforms:

• Zephyr

• Amazon FreeRTOS

Steps

Get embARC OSP

• git

The embARC OSP source code is hosted in a GitHub repository. The repository consists of scripts and other
things to you need to setup your development environment, and use Git to get this repo. If you do not have Git
installed, see the beginning of the OS-specific instructions for help.

Using Git to clone the repository anonymously.

On Windows
cd %userprofile%
On Linux
cd ~

git clone https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_osp.git
→˓embarc_osp

You have checked out a copy of the source code to your local machine.

• http download

You may also try to get the latest release of embARC OSP as a zip from the repository, see release page.

Run the examples

The command-line interface is the default interface to use embARC OSP. After getting the embARC OSP package,
you need to open a cmd console in Windows or a terminal in Linux and change directory to the root of embARC
OSP.

Use the blinky as an example.

1. Go to the blinky example folder

cd example\baremetal\blinky

2. Connect your board to PC host, and open the UART terminal with putty/tera term/minicom

3. Build and run it with command, here ARC GNU toolchain is selected

For EMSK 2.3
make TOOLCHAIN=gnu BOARD=emsk BD_VER=23 CUR_CORE=arcem11d run
For EMSK 2.2
make TOOLCHAIN=gnu BOARD=emsk BD_VER=22 CUR_CORE=arcem7d run
For IoTDK
make TOOLCHAIN=gnu BOARD=iotdk run

Note: For EM Starter Kit, make sure the board version (BD_VER) and core configuration (CUR_CORE) match
your hardware. You could press configure button (located above the letter “C” of the ARC logo on the EM Starter
Kit) when bit 3 and bit 4 of SW1 switch is off to run a self-test. By doing so, board information is sent by UART
and displayed on your UART terminal.

3.1. Basic labs 25

https://www.zephyrproject.org/
https://aws.amazon.com/freertos/
https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_osp
https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_osp/releases

ARC labs handbook, Release 2018.09

4. Get the results

• For EMSK, you can see the on-board LEDs start to blink when the download is successful.

• For IoTDK, as it does not have usable LEDs except some status LEDs, the following output log is displayed
through UART.

led out: ff, ff
led out: ff00, ff
led out: ff, ff
led out: ff00, ff
led out: ff, ff
led out: ff00, ff
led out: ff, ff
led out: ff00, ff
led out: ff, ff
led out: ff00, ff
led out: ff, ff
led out: ff00, ff
led out: ff, ff
led out: ff00, ff
led out: ff, ff
.................

Debug the examples

Use the blinky as example, to debug it, you need to run the following commands:

For emsk 2.3
make TOOLCHAIN=gnu BOARD=emsk BD_VER=23 CUR_CORE=arcem11d gui
For emsk 2.2
make TOOLCHAIN=gnu BOARD=emsk BD_VER=22 CUR_CORE=arcem7d gui
For IoTDK
make TOOLCHAIN=gnu BOARD=iotdk gui

For MetaWare Development Toolkit, the mdb (MetaWare debugger) is used and it is a GUI interface. You can
refer the MetaWare toolchain user manual for details.

For GNU Toolchain for ARC Processors, the command-line based gdb is used. You need to have some basic
knowledge of gdb debug.

Create your own application

Create your own application in embARC OSP.

• Goals

– Bare-metal application based on embARC OSP

– Hardware: EMSK 2.2 - ARC EM7D Configuration / IoTDK

– Print “Hello world from embARC” through UART at 115200 bps

– Use GNU toolchain to running and debugging in the command line

1. Create a folder named hello_world under embarc/example/baremetal.

2. Copy the makefile template example/example.makefile and main.c.tmpl into hello_world
folder and rename example.makefile to makefile, rename main.c.tmpl to main.c.

3. Change the configurations in makefile according to your hardware configuration and application.

• Change the application name: change the value of APPL to helloworld.

26 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

• Change the board name: change the value of BOARD to emsk / iotdk. This option can also be given
in command-line. If not specified, the default value is emsk

• Change the board version: change the value of BD_VER to 22 (for emsk) or 10 (for iotdk). This
option can also be given in command-line. If not specified, the default value is 22 for board emsk.

• Change the core configuration: change the value of CUR_CORE to arcem7d This option can also be
given in command-line. If not specified, the default is arcem7d for board emsk and version 22. For
iotdk, CUR_CORE can be bypassed as iotdk only has one core configuration.

• Change the embARC OSP root: change the value of EMBARC_ROOT to ../../... EMBARC_ROOT
can be relative path or an absolute path.

• Add the middleware that you need for this application: Change the value of MID_SEL.

– The value of MID_SELmust be the folder name in <embARC>/middleware, such as common
or lwip.

– If using lwip, ntshell, fatfs, and common, set MID_SEL to lwip ntshell fatfs
common.

– Set it to common in the “HelloWorld” application.

• Change your toolchain: change the value of TOOLCHAIN to gnu.

• Update source folders and include folder settings.

– Update the C code folder settings: change the value of APPL_CSRC_DIR to ..
APPL_CSRC_DIR is the C code relative path to the application folder

– Update the assembly source-folder settings: change the value of APPL_ASMSRC_DIR.

– Update the include-folders settings: change the value of APPL_INC_DIR which is the applica-
tion include path to the application folder.

– If more than one directory is needed, use whitespace between the folder paths.

• Set your application defined macros: Change the value of APPL_DEFINES.

– For example, if define APPLICATION=1, set APPL_DEFINES to -DAPPLICATION=1.

Then makefile for hello world application will be like this

embARC application makefile template
You can copy this file to your application folder
and rename it to makefile.
##

##
Application name
##
APPL ?= helloworld

##
Extended device list
##
EXT_DEV_LIST +=

Optimization level
Please refer to toolchain_xxx.mk for this option
OLEVEL ?= O2

##
Current board and core (for emsk)
##
BOARD ?= emsk
BD_VER ?= 22
CUR_CORE ?= arcem7d

(continues on next page)

3.1. Basic labs 27

ARC labs handbook, Release 2018.09

(continued from previous page)

##
Current board and core (for iotdk)
BOARD ?= iotdk
BD_VER ?= 10

##
Debugging JTAG
##
JTAG ?= usb

##
Toolchain
##
TOOLCHAIN ?= gnu

##
Uncomment following options
if you want to set your own heap and stack size
Default settings see options.mk
##
#HEAPSZ ?= 8192
#STACKSZ ?= 8192

##
Uncomment following options
if you want to add your own library into link process
For example:
If you want link math lib for gnu toolchain,
you need to set the option to -lm
##
#APPL_LIBS ?=

##
Root path of embARC
##
EMBARC_ROOT = ../..

##
Middleware
##
MID_SEL = common

##
Application source path
##
APPL_CSRC_DIR = .
APPL_ASMSRC_DIR = .

##
Application include path
##
APPL_INC_DIR = .

##
Application defines
##
APPL_DEFINES =

##

(continues on next page)

28 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

Include current project makefile
##
COMMON_COMPILE_PREREQUISITES += makefile

Options above must be added before include options.mk
Include key embARC build system makefile
override EMBARC_ROOT := $(strip $(subst \,/,$(EMBARC_ROOT)))
include $(EMBARC_ROOT)/options/options.mk

4. Run

• Set your EM Starter Kit 2.2 hardware configuration to ARC EM7D (no need to set to IoT
Development Kit), and connect it to your PC. Open PuTTY or Tera-term, and connect to the
right COM port. Set the baud rate to 115200 bps.

• Enter make run in the command-line to run this application.

Exercises

Create your application which is different with blinky and hello_world in embARC OSP.

3.1.3 How to use ARC board

Purpose

• To get familiar with the usage of ARC board and on-board peripherals

• To know how to program and debug the ARC board and on-board peripherals

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/lab5_emsk / embarc_osp/arc_labs/labs/lab5_iotdk

Content

• A brief introduction of ARC board and on-board peripherals

• Based on embARC OSP, program the GPIO to control some on-board peripherals

Note: About the detailed usage of embARC OSP, see How to use embARC OSP

Principles

EM Starter Kit

About the brief introduction of EM Starter Kit, see to embARC OSP Documentation

3.1. Basic labs 29

http://embarc.org/arc_labs/doc/build/html/labs/level1/lab2.html
http://embarc.org/embarc_osp/doc/build/html/board/emsk.html

ARC labs handbook, Release 2018.09

There are LEDs, DIP switches, and buttons on EM Starter Kit, this lab shows how to program the GPIO to control
these on-board peripherals of EM Starter Kit. The code for this lab is located in embarc_osp/arc_labs/
labs/lab5_emsk. In the code, the on-board buttons and DIP switches’ values are read, and whether LEDs are
on or off depend on the value of the buttons and DIP switches.

IoT Development Kit

About the brief introduction of IoT Development Kit, see embARC OSP Documentation

As there are no LED or other easy-to-use peripherals on IoT Development Kit, this lab shows how to control a
LED through the arduino interface of IoT Development Kit. The code for this lab is located in embarc_osp/
arc_labs/labs/lab5_iotdk. In the code, the external connected LED blinks periodically.

Steps

EM Starter Kit

1. Connect EM Starter Kit to your computer, select em7d configuration and open UART terminal.

2. Compile and run the embarc_osp/arc_labs/lab5_emsk example with the following commands:

cd /arc_labs/lab5_emsk
make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run

3. Press the buttons (L or/and R) and toggle the DIP switches (3 or/and 4), then check the result in UART
terminal, and watch the changes of on-board LEDs.

30 Chapter 3. Hands-on labs

http://embarc.org/embarc_osp/doc/build/html/board/iotdk.html

ARC labs handbook, Release 2018.09

IoT Development Kit

IoT Development Kit has an arduino interface, here select arduino digital pinout ARDUINO_PIN_0(iotdk
gpio4b_2[0]) to control LED.

1. Find a LED, connect the LED anode pin to ARDUINO_PIN_0, connect the LED cathode pin to GND of
IoT Development Kit.

2. Connect the USB cable to the USB data port of IoT Development Kit and the computer.

3. Compile and run the embarc_osp/arc_labs/lab5_iotdk example with the following commands:

cd /arc_labs/lab5_iotdk
make BOARD=iotdk TOOLCHAIN=gnu run

4. Watch the changes of external connected LED.

3.1. Basic labs 31

ARC labs handbook, Release 2018.09

Note: The connection between LED and IoT Development Kit is just for test. A 1kΩ resistor should be added in
series connection to limited the current and prevent damage to I/O pin.

Exercises

Try to create you own application to control the peripherals of ARC board

Note: The ARC IoT Development Kit is powered over USB. Note that the ARC IoT Development Kit needs to
be powered by an external power adapter if additional devices are connected to the extension interfaces. External
power supply must be 5V DC (A 12V power supply will most probably damage your board).

3.1.4 ARC features: AUX registers and timers

Purpose

• To know the auxiliary registers and processor timers of DesignWare® ARC® processors

• To learn how to program auxiliary registers to control the processor timers

Requirements

The following hardware and tools are required:

32 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/lab_timer

Content

• Through reading the corresponding Build Configuration Register (BCR) auxiliary registers of processor
timers to get the configuration information

• Through programming the auxiliary registers to initialize, start and stop the timer (here TIMER0 is used)

• By reading the count value of processor timers, get the execution time of a code block

Principles

Auxiliary Registers

The auxiliary register set contains status and control registers, which by default are 32 bits wide to implement the
processor control, for example, interrupt and exception management and processor timers. These auxiliary regis-
ters occupy a separate 32-bit address space from the normal memory-access (that is load and store) instructions.
Auxiliary registers accessed using distinct Load Register (LR), Store Register (SR), and Auxiliary EXchange
(AEX) instructions.

The auxiliary register address region 0x60 up to 0x7F and region 0xC0 up to 0xFF is reserved for the Build
Configuration Registers (BCRs) that can be used by embedded software or host debug software to detect the
configuration of the ARCv2-based hardware. The Build Configuration Registers contain the version of each
ARCv2-based extension and also the build-specific configuration information.

In embARC OSP, arc_builtin.h provides API (arc_aux_read and arc_aux_read) to access the auxiliary
registers.

Processor Timers

The processor timers are two independent 32-bit timers and a 64-bit real-time counter (RTC). Timer0 and Timer1
are identical in operation. The only difference is that these timers are connected to different interrupts. The timers
cannot be included in a configuration without interrupts. Each timer is optional and when present, it is connected
to a fixed interrupt; interrupt 16 for timer 0 and interrupt 17 for timer 1.

The processor timers are connected to a system clock signal that operates even when the ARCv2-based processor
is in the sleep state. The timers can be used to generate interrupt signals that wake the processor from the SLEEP
state. The processor timers automatically reset and restart their operation after reaching the limit value. The
processor timers can be programmed to count only the clock cycles when the processor is not halted. The processor
timers can also be programmed to generate an interrupt or to generate a system Reset upon reaching the limit value.
The 64-bit RTC does not generate any interrupts. This timer is used to count the clock cycles atomically.

Through the BCR register 0x75, you can get the configuration information of processor timers

In embARC OSP, arc/arc_timer.h provides API to operate the processor timers.

Program flow chart

The code’s flow is shown below:

3.1. Basic labs 33

ARC labs handbook, Release 2018.09

The code can be divided into 3 parts:

• Part1 : read the BCR of internal timers to check the features

• Part2 : promgram Timer0 by auxiliary registers with the embARC OSP provided API

• Part3 : read the counts to Timer 0 to measure a code block’s execution time

Steps

1. Build and Run

$ cd <embarc_root>/arc_labs/labs/lab_timer
for emsk
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run
for iotdk
$ make BOARD=iotdk TOOLCHAIN=gnu run

2. Output

____ _ ____

| _ \ _____ _____ _ __ ___ __| | __) _ _
	_) / _ \ \ /\ / / _ \ '__/ _ \/ _`	_ \|						
__/ (_) \ V V / __/		__/ (_			_)		_	
_	___/ _/_/ ___	_	___	__,_	____/ __,			

|___/
_ _ ____ ____

___ _ __ ___ | |__ / \ | _ \ / ___|
/ _ \ '_ ` _ \| '_ \ / _ \ | |_) | |

| __/ | | | | | |_) / ___ \| _ <| |___

(continues on next page)

34 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

___|_| |_| |_|_.__/_/ __| _____|
--

embARC Build Time: Aug 22 2018, 15:32:54
Compiler Version: MetaWare, 4.2.1 Compatible Clang 4.0.1 (branches/release_40)
Does this timer0 exist? YES
timer0's operating mode:0x00000003
timer0's limit value :0x00023280
timer0's current cnt_number:0x0000c236

Does this timer1 exist? YES
timer1's operating mode:0x00000000
timer1's limit value :0x00000000
timer1's current cnt_number:0x00000000

Does this RTC_timer exist? NO

The start_cnt number is:2
/******** TEST MODE START ********/

This is TEST CODE.

This is TEST CODE.

This is TEST CODE.

/******** TEST MODE END ********/
The end_cnt number is:16785931
The board cpu clock is:144000000

Total time of TEST CODE BLOCK operation:116

Exercises

1. Try to program TIMER1

2. Try to create a clock with a tick of 1 second

3.1.5 ARC features: Interrupts

Purpose

• To introduce the interrupt handling of DesignWare® ARC® processors

• To know how to use the interrupt and timer APIs already defined in embARC OSP

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/lab_interrupt

3.1. Basic labs 35

ARC labs handbook, Release 2018.09

Content

• Through embarc_osp/arc_labs/labs/lab_interrupt/part1 to learn the basics of interrupt
handling of DesignWare® ARC® processors and the interrupt API provided by embARC OSP

• Through embarc_osp/arc_labs/labs/lab_interrupt/part2 to learn the interrupt priority
and interrupt nesting of DesignWare® ARC® processors and corresponding API of embARC OSP

Principles

1. Interrupt

An interrupt is a mechanism in processor to respond to special interrupt signals emitted by hardware or software.
Interrupts can be used by processor to perform a specific function after some specific event happens and then
return to normal operation. For this purpose there are many different types of interrupts possible to be issued by
hardware and software and each interrupt can have it’s own functions called Interrupt Service Routine (ISR). ISR
is a function (sequence of commands) to deal with the immediate event generated by a given interrupt.

2. Interrupt unit of DesignWare® ARC® processors

The interrupt unit of DesignWare® ARC® processors has 16 allocated exceptions associated with vectors 0 to
15 and 240 interrupts associated with vectors 16 to 255. The ARCv2 interrupt unit is highly programmable and
supports the following interrupt types:

• Timer — triggered by one of the optional extension timers and watchdog timer

• Multi-core interrupts —triggered by one of the cores in a multi-core system

• External — available as input pins to the core

• Software-only — triggered by software only

The interrupt unit of DesignWare® ARC® processors has the following interrupt specifications:

• Support for up to 240 interrupts

– User configurable from 0 to 240

– Level sensitive or pulse sensitive

• Support for up to 16 interrupt priority levels

– Programmable from 0 (highest priority) to 15 (lowest priority)

• The priority of each interrupt can be programmed individually by software

• Interrupt handlers can be preempted by higher-priority interrupts

– Optionally, highest priority level 0 interrupts can be configured as “Fast Interrupts”

– Optional second core register bank for use with Fast Interrupts option to minimize interrupt ser-
vice latency by minimizing the time needed for context saving

• Automatic save and restore of selected registers on interrupt entry and exit for fast context switch

• User context saved to user or kernel stack, under program control

• Software can set a priority level threshold in STATUS32.E that must be met for an interrupt request to
interrupt or wake the processor

• Minimal interrupt / wake-up logic clocked in sleep state

– Interrupt prioritization logic is purely combinational

• Any Interrupt can be triggered by software

The interrupt unit can be programmed by auxiliary registers. For more details, See DesignWare® ARC® proces-
sors ISA.

3. Interrupt API in embARC OSP

36 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

In embARC OSP, a basic exception and interrupt processing framework is implemented in embARC OSP. Through
this framework, you can handle specific exceptions or interrupts by installing the desired handlers. This can help
you analyze the underlying details of saving and operating registers. See here for detais.

The interrupt and exception related API are defined in arc_exception.h.

Steps

Part I: implement a customized timer0 interrupt handling

1. Build and Run

$ cd <embarc_root>/arc_labs/labs/lab4_interrupt/part1
for emsk
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run
for iotdk
$ make BOARD=iotdk TOOLCHAIN=gnu run

2. Output

embARC Build Time: Mar 16 2018, 09:58:46
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1

This is an example about timer interrupt
/********TEST MODE START********/
0s

1s

2s

3s

4s

5s

...

3. Code analysis

The code can be divided into three parts: interrupt service function, main function, and delay function.

• Interrupt service function:

static void timer0_isr(void *ptr)
{

arc_timer_int_clear(TIMER_0);
t0++;

}

This code is a standard example of an interrupt service routine: enters the service function, clears the interrupt
flag bit, and then performs the processing that needs to be done in the interrupt service function. Other interrupt
service functions can also be written using this template.

In this function, the count variable t0 is incremented by one.

• Main function

int main(void)
{

int_disable(INTNO_TIMER0);

(continues on next page)

3.1. Basic labs 37

http://embarc.org/embarc_osp/doc/build/html/arc/arc.html#arc-hal-exc-int

ARC labs handbook, Release 2018.09

(continued from previous page)

arc_timer_stop(TIMER_0);

int_handler_install(INTNO_TIMER0, timer0_isr);
int_pri_set(INTNO_TIMER0, INT_PRI_MIN);

EMBARC_PRINTF("\r\nThis is a example about timer interrupt.\r\n");
EMBARC_PRINTF("\r\n/******** TEST MODE START ********/\r\n\r\n");

int_enable(INTNO_TIMER0);
arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH, COUNT);

while(1)
{

timer0_delay_ms(1000);
EMBARC_PRINTF("\r\n %ds.\r\n",second);
second ++;

}
return E_SYS;

}

The EMBARC_PRINTF function is only used to send information to the computer, which can be ignored during
analysis.

This code is divided into two parts: initialization and looping.

In the initialization section, the timer and timer interrupts are configured.

This code uses the embARC OSP API to program Timer0. These two methods are the same. The API just
encapsulates the read and write operations of the auxiliary registers for convenience.

First, in order to configure Timer0 and it’s interrupts, turn them off first. This work is done by the functions
int_disable and arc_timer_stop.

Then configure the interrupt service function and priority for our interrupts. This work is done by the functions
int_handler_install and int_pri_set.

Finally, after the interrupt configuration is complete, enable the Timer0 and interrupts that are previously turned
off. This work is done by the functions int_enable and arc_timer_start. The implementation of the
arc_timer_start function is the same as the reading and writing of the auxiliary registers in lab_timer. You
can view them in the file arc_timer.c. One point to note in this step is the configuration of timer_limit (the last
parameter of arc_timer_start). Configure the interrupt time to 1ms, do a simple calculation (the formula is
the expression after COUNT).

In this example, the loop body only serves as an effect display. Delay function in the loop body to print the time
per second is called.

Note: Since nSIM is only simulated by computer, there may be time inaccuracy when using this function. You
can use the EMSK to program the program in the development board. In this case, the time is much higher than
that in nSIM.

• Delay function

static void timer0_isr(void *ptr)
{

t0 = 0;
while(t0<ms);

}

This code is very simple and the idea is clear. When the function entered, clear the global variable t0. The interrupt
interval is set to 1ms in the above arc_timer_start, assume that every time t0 is incremented, the time has passed
1ms.

38 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Wait through the while(t0<ms) sentence, so that the full ms delay with higher precision is received.

Part II: interrupt priority and interrupt nesting

1. Build and Run

$ cd <embarc_root>/arc_labs/labs/lab4_interrupt/part2
for emsk
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run
for iotdk
$ make BOARD=iotdk TOOLCHAIN=gnu run

2. Output

embARC Build Time: Mar 16 2018, 09:58:46
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1

This test will start in 1s.

/********TEST MODE START********/

Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt
Interrupt
Interrupt

3. Code analysis

The code for PART II can be divided into two parts: the interrupt service routine and the main function.

• Interrupt service function

static void timer0_isr(void *ptr)
{

arc_timer_int_clear(TIMER_0);

timer_flag = 0;

board_delay_ms(10, 1);

if(timer_flag)
{

EMBARC_PRINTF("Interrupt nesting!\r\n");
}
else
{

EMBARC_PRINTF("Interrupt\r\n");
}

(continues on next page)

3.1. Basic labs 39

ARC labs handbook, Release 2018.09

(continued from previous page)

hits++;
}

static void timer1_isr(void *ptr)
{

arc_timer_int_clear(TIMER_1);

timer_flag = 1;
}

Through the above code, when timer0’s interrupt comes in and is serviced, different output messages are sent by
ISR according to the value of timer_flag, which is only be set in timer1’s ISR timer1_isr. This means timer0’s
interrupt is preempted by timer1’s interrupt as it has a higher interrupt priority.

“Interrupt nesting!” indicates that interrupt nesting has occurred, and “Interrupt” indicates that it has not occurred.

• main function

int main(void)
{

arc_timer_stop(TIMER_0);
arc_timer_stop(TIMER_1);

int_disable(INTNO_TIMER0);
int_disable(INTNO_TIMER1);

int_handler_install(INTNO_TIMER0, timer0_isr);
int_pri_set(INTNO_TIMER0, INT_PRI_MAX);

int_handler_install(INTNO_TIMER1, timer1_isr);
int_pri_set(INTNO_TIMER1, INT_PRI_MIN);

EMBARC_PRINTF("\r\nThe test will start in 1s.\r\n");

int_enable(INTNO_TIMER0);
int_enable(INTNO_TIMER1);

arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH, MAX_COUNT);
arc_timer_start(TIMER_1, TIMER_CTRL_IE | TIMER_CTRL_NH, MAX_COUNT/100);

while(1)
{

if((hits >= 5) && (nesting_flag == 1)) {
arc_timer_stop(TIMER_0);
arc_timer_stop(TIMER_1);

int_disable(INTNO_TIMER0);
int_disable(INTNO_TIMER1);

int_pri_set(INTNO_TIMER0, INT_PRI_MIN);
int_pri_set(INTNO_TIMER1, INT_PRI_MAX);

nesting_flag = 0;

int_enable(INTNO_TIMER0);
int_enable(INTNO_TIMER1);

arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH,
→˓MAX_COUNT);

arc_timer_start(TIMER_1, TIMER_CTRL_IE | TIMER_CTRL_NH,
→˓MAX_COUNT/10);

(continues on next page)

40 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

} else if((hits >= 10) && (nesting_flag == 0)) {
arc_timer_stop(TIMER_0);
arc_timer_stop(TIMER_1);

int_disable(INTNO_TIMER0);
int_disable(INTNO_TIMER1);

int_pri_set(INTNO_TIMER0, INT_PRI_MAX);
int_pri_set(INTNO_TIMER1, INT_PRI_MIN);

hits = 0;
nesting_flag = 1;

int_enable(INTNO_TIMER0);
int_enable(INTNO_TIMER1);

arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH,
→˓MAX_COUNT);

arc_timer_start(TIMER_1, TIMER_CTRL_IE | TIMER_CTRL_NH,
→˓MAX_COUNT/100);

}
}
return E_SYS;

}

First, the timer 0 and timer 1 are configured and install with corresponding ISR. Then in the while loop, the
interrupt priority of timer 0 and timer 1 are periodically changed to make the interrupt nesting happen.

Exercises

Try using an interrupt other than a timer to write a small program. (For example, try to implement a button
controlled LED using GPIO interrupt)

3.1.6 A simple bootloader

Purpose

• Understand the memory map of ARC boards

• Understand the principles of bootloader and self-booting

• Understand the usage of shell commands in cmd

• Create a self-booting application

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• SD card

• example/baremetal/bootloader

3.1. Basic labs 41

ARC labs handbook, Release 2018.09

Simple Bootloader

This simple bootloader is designed to work as a secondary/simple bootloader for embARC OSP, it loads boot.
hex or boot.bin on SD Card and run that program. The example can be used as ntshell application.

The following features are provided in this simple bootloader:

• Boot application from SD card

• File operations on SD card

• UART Y-modem protocol to update application

• Operations on ARC processors

Content

1. Build and run the example/baremetal/bootloader

2. Download the generated bootloader.bin into flash

3. Build a self-boot application and boot it from SD card

4. Use the ntshell commands

Principles

Memory Map of ARC board

EM Starter Kit

The available memory regions of EM Starter Kit are shown below:

Table 1: Memory Map of EM Starter Kit
Name Start address Size
on-chip ICCM 0x00000000 256/128 KB
on-chip DCCM 0x80000000 128 KB
on-board DDR RAM 0x10000000 128 MB

In this lab, the last 1 MB of DDR (starting from 0x17f00000) is reserved for the simple bootloader, other memory
regions are available for application.

IoT Development Kit

The available memory regions of IoT Development Kit are shown in the following table:

Table 2: Memory Map of IoT Development Kit
Name Start address Size
on-chip eflash 0x00000000 256 KB
external boot SPI flash 0x10000000 2 MB
on-chip ICCM 0x20000000 256 KB
on-chip SRAM 0x30000000 128 KB
on-chip DCCM 0x80000000 128 KB
on-chip XCCM 0xC0000000 32 KB
on-chip YCCM 0xE0000000 32 KB

In this lab, on-chip eflash and on-chip SRAM are reserved for the simple bootloader, CCMs are reserved for
application.

42 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Boot of ARC board

EM Starter Kit

The EM Starter Kit uses a Xilinx SPARTAN-6 FPGA part which can be configured to run different members of the
ARCv2 EM Processor family. The EMSK includes a SPI flash pre-programmed with four FPGA configurations
of ARC EM cores.

When a “power on” or reset/configure is issued, the FPGA auto-loads one of the pre-installed FPGA configurations
from SPI flash. After the FPGA configuration is loaded from the SPI flash, a simple primary bootloader is loaded
in ICCM. Through the primary bootloader, an application can be loaded from SPI Flash into ICCM or external
DDR memory.

Considering that the SPI Flash is used to store FPGA images, the secondary bootloader is designed based on the
primary bootloader to load an application from an SD card since it can be read and written easily. The startup
sequence is listed below:

1. Power on or reset event.

2. Load FPGA configuration from the SPI flash.

3. Run primary bootloader, which loads the secondary bootloader from the SPI Flash into main memory
(DDR).

4. Run secondary bootloader from main memory to load application from the SD card into ICCM/DDR mem-
ory.

5. Run the application from ICCM/DDR memory.

IoT Development Kit

IoT Development Kit can boot from on-chip eflash and extern boot SPI flash, which is decided by the FWU switch
of IOTDK. When this switch is set to “off”, the processor starts executing the program stored in on-chip eflash;
When this switch is set to “on”, the processor starts executing the program stored in external boot SPI eflash. The

3.1. Basic labs 43

ARC labs handbook, Release 2018.09

simple bootloader can be written to both flash to load an application from the TF card. The startup sequence for
IoT Development Kit is listed below:

1. Power on or reset event

2. Boot from on-chip eflash or extern boot SPI flash decided by the FWU switch

3. Run simple bootloader to load application from the TF card into ICCM

4. Run the application from ICCM memory

How to flash the ARC board

Note: In this lab, we do not use MCUBoot, so we need to disable MCUBoot, we should set USE_MCUBOOT
= 0 in makefile.

EM Starter Kit

• Generate a secondary bootloader binary file

$ cd <embarc_root>/example/baremetal/bootloader
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu bin

• Program the secondary bootloader binary file into SPI Flash

– Insert SD card to your PC, and copy the binary file obj_emsk_22/gnu_arcem7d/
emsk_bootloader_gnu_arcem7d.bin to SD card root folder, and rename it to
em7d_2bt.bin

– Insert the SD card to EMSK Board, choose the right core configuration, build and run the
<embARC>/example/baremetal/bootloader example, then press any button to stop
auto boot process, and enter to ntshell command mode

– Use ntshell command spirw to program the em7d_2bt.bin into spiflash

* Run spirw to show help

* Run spirw -i to check SPI Flash ID, it should be Device ID = ef4018

* Run spirw -w em7d_2bt.bin 0x17f00000 0x17f00004 to program spiflash

* Check the output message to see if it has been programmed successfully

44 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

– If programmed successfully, when the board is reset, make sure Bit 4 of the on-board DIP switch
is ON to enable secondary bootloader run

– If the SD card already contains the boot.bin in it, the bootloader automatically loads it from SD
card. If not, it enters to ntshell mode

– You can goto the next step to generate the boot.bin for proper application you want to be
auto-loaded in SD card

3.1. Basic labs 45

ARC labs handbook, Release 2018.09

• Generate boot.bin using any embARC example, it’s RAM start address should be 0x10000000. Use
bootloader to run it

46 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

• Known Issues

– Boot rom of EMSK1.x is not able to load secondary bootloader on SPI Flash, you need a modified
EMSK1.x mcs file to enable this function, send request in forum about this mcs file.

IoT Development Kit

• Generate a secondary bootloader binary file

• Program the secondary bootloader binary file into SPI Flash

– Insert SD card to your PC, and copy the binary file obj_iotdk_10/mw_arcem9d/
simple_bootloader_mw_arcem9d.bin to SD card Root, and rename it to
simple_bootloader.bin

– copy the file example/bootloader/boot.json to SD card root, and change the boot_file
value to boot.bin, and change the ram_startaddress to 536870912(0x20000000)

– Insert the SD card to iotdk Board, rmove APPL_DEFINES += -DUSE_APPL_MEM_CONFIG
in makefile, build and run the <embARC>/example/baremetal/bootloader example,
and enter to ntshell command mode.

– Use ntshell command flash to program the simple_bootloader.bin into both flash

* Run flash -h to show help

* Run flash -eflsh simple_bootloader.bin to program eflash

* Run flash -bootspi simple_bootloader.bin to program bootspi flash

* Check the output message to see if it was programmed successfully

3.1. Basic labs 47

ARC labs handbook, Release 2018.09

– If the SD card already contains the boot.bin and boot.json in it, the bootloader automati-
cally loads it from SD card, if not, it enters to ntshell mode

– You can goto the next step to generate the boot.bin for proper application you want to be
auto-loaded in SD card

• Generate boot.bin using any embARC example, its RAM start address should be 0x20000000. Use
bootloader to run it

Exercises

1. Create and build a different self-boot embARC application

2. Use the ntshell commands

48 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

3. Use the UART-ymodem to load your application

3.2 Advanced labs

3.2.1 Memory map and linker

Purpose

• To get familiar with memory layout in compilation process

• To learn how to use linker

Requirements

The following hardware and tools are required:

• PC host

• ARC GNU toolchain/MetaWare Development Toolkit

• nSIM simulator

• embarc_osp/arc_labs/labs/lab8_linker

Content

• Customizing your program with compiler pragmas.

• Using “pragma code” to specify a new name of section in which the code of function reside.

• Mapping this code section into specified memory location with linker.

• Checking the location of this code section after build process.

Principles

By default, compiler-generated code is placed in the .text section. The default code section name can be overridden
by using the code pragma. After compilation process, the linker automatically maps all input sections from object
files to output sections in executable files. If you want to customize the mapping, you can change the default linker
mapping by invoking a linker command file.

Steps

Create a project and overriding code section name

Open MetaWare IDE, create an empty C project called lab_linker and select ARC EM series processor. Import
the main.c and link.cmd files from the embarc_osp/arc_labs/labs/lab8_linker directory into the project.

Open main.c file in MetaWare IDE, use “pragma code” to change the section in which function modify reside
from .text to a new name “modify_seg”.

#pragma Code ("modify_seg")
void modify(int list[], int size) {

int out, in, temp;

for(out=0; out<size; out++)
for(in=out+1; in<size; in++)

(continues on next page)

3.2. Advanced labs 49

ARC labs handbook, Release 2018.09

(continued from previous page)

if(list[out] > list[in]) {
temp = list[in];
list[in] = list[out];
list[out] = temp;

}
}
#pragma Code ()

Pragma code has two forms that must be used in pairs to bracket the affected function definitions:

#pragma code(Section_name)
/* ----- Affected function definitions go here ---- */
#pragma code() /* No parameters here */

Section_name is a constant string expression that denotes the name of the section.

Note: About detailed usage of the compiler pragmas, see MetaWare C/C++ Programmer’s Guide for the ccac
Compiler.

Edit the linker command file

Open link.cmd file, there are two parts, one is for memory blocks location, the other is for sections mapping. Add
one new block named “MyBlock” in MEMORY, the start address is 0x00002000, and the size is 32KB. Add one
new GROUP in SECTIONS, and mapping section “modify_seg” into MyBlock.

MEMORY {
// Note: overlap of code and data spaces is not recommended since it makes
// Address validity checking impossible with the debugger and simulator
MyBlock: ORIGIN = 0x00002000, LENGTH = 32K
MEMORY_BLOCK1: ORIGIN = 0x0010000, LENGTH = 64K
MEMORY_BLOCK2: ORIGIN = 0x0020000, LENGTH = 128K

}

SECTIONS {
GROUP: {

modify_seg: {}
}>MyBlock

......

Note: About format and syntax of the linker command file, see MetaWare ELF Linker and Utilities User’s Guide.

Add the linker command file into the project

Right-click the current project lab_linker and select Properties. Click C/C++ build > Settings > Tool Settings to
open the linker option settings page.

50 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Select Command files to add linker.cmd file into this project.

Check the result

In the linker option settings window, select Map listing to check Generate listing file(=.map)

3.2. Advanced labs 51

ARC labs handbook, Release 2018.09

Build the lab_linker project, then open the lab_linker.map file.

Search SECTIONS SUMMARY, then you can check the size and location of modify_seg section, it resides in
MyBlock, similar to you setting in the linker command file.

Exercises

Check the memory mapping info of modify_seg section by using elfdump tool.

3.2.2 A WiFi temperature monitor

Purpose

• To learn how to build a wireless sensor terminal based on the embARC OSP package

• To know how to use ESP8266 module and AT commands

• To learn more about the usage of FreeRTOS operating system

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (IoT Development Kit)

• embARC OSP package

• embarc_osp/arc_labs/labs/lab_esp8266_wifi

Content

Through this lab, you get a preliminary understanding of ESP8266 WiFi module and the AT command.

The lab is based on the embARC OSP package and the supports of the popular WiFi module, ESP8266. During
the lab, you first use the AT command to set the ESP8266 to the server mode. Then you can use your laptop or
mobile phone to access ESP8266 by IP address. You get a static webpage transmitted via TCP protocol.

52 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Principles

ESP8266

The ESP8266 is an ultra-low-power WiFi chip with industry-leading package size and ultra-low power technology.
It is designed for mobile devices and IoT applications, facilitating the connection between user devices to IoT
environments.

The ESP8266 is available with various encapsulations. On-board PCB antenna, IPEX interface, and stamp hole
interface are supported.

ESP8266 can be widely used in smart grid, intelligent transportation, smart furniture, handhold devices, industrial
control, and other IoT fields.

Ai-Thinker company has developed several WiFi modules based on ESP8266, including ESP01 and ESP01S
which are used in this lab.

Note: See embARC doc to learn how to connect it with your board.

Program structure is shown below

3.2. Advanced labs 53

http://embarc.org/embarc_osp/doc/build/html/getting_started/peripheral_preparation.html#other-pmod-or-compatible-modules

ARC labs handbook, Release 2018.09

Code is shown below

#include "embARC.h"
#include "embARC_debug.h"

#include "board.h"
#include "esp8266.h"

#include <stdio.h>
#include <string.h>

#define WIFI_SSID "\"embARC\""
#define WIFI_PWD "\"qazwsxedc\""

static char http_get[] = "GET /";
static char http_IDP[] = "+IPD,";
static char http_html_header[] = "HTTP/1.x 200 OK\r\nContent-type: text/
→˓html\r\n\r\n";
static char http_html_body_1[] =

"<html><head><title>ESP8266_AT_HttpServer</title></head><body><h1>Welcome to
→˓this Website</h1>";
static char http_html_body_2[] =

"<p>This Website is used to test the AT command about HttpServer of ESP8266.</
→˓p></body></html>";

(continues on next page)

54 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

static char http_server_buf[1024];

int main(void)
{

char *conn_buf;

//ESP8266 Init
EMBARC_PRINTF("============================ Init ============================\n

→˓");

ESP8266_DEFINE(esp8266);
esp8266_init(esp8266, UART_BAUDRATE_115200);
at_test(esp8266->p_at);
board_delay_ms(100, 1);

//Set Mode
EMBARC_PRINTF("============================ Set Mode

→˓============================\n");

esp8266_wifi_mode_get(esp8266, false);
board_delay_ms(100, 1);
esp8266_wifi_mode_set(esp8266, 3, false);
board_delay_ms(100, 1);

//Connect WiFi
EMBARC_PRINTF("============================ Connect WiFi

→˓============================\n");

do {
esp8266_wifi_scan(esp8266, http_server_buf);
EMBARC_PRINTF("Searching for WIFI %s\n", WIFI_SSID);
board_delay_ms(100, 1);

} while (strstr(http_server_buf, WIFI_SSID)==NULL);

EMBARC_PRINTF("WIFI %s found! Try to connect\n", WIFI_SSID);

while (esp8266_wifi_connect(esp8266, WIFI_SSID, WIFI_PWD, false) != AT_OK) {
EMBARC_PRINTF("WIFI %s connect failed\n", WIFI_SSID);
board_delay_ms(100, 1);

}

EMBARC_PRINTF("WIFI %s connect succeed\n", WIFI_SSID);

//Creat Server
EMBARC_PRINTF("============================ Connect Server

→˓============================\n");

esp8266_tcp_server_open(esp8266, 80);

//Show IP
EMBARC_PRINTF("============================ Show IP

→˓============================\n");

esp8266_address_get(esp8266);
board_delay_ms(1000, 1);

while (1) {
memset(http_server_buf, 0, sizeof(http_server_buf));
at_read(esp8266->p_at ,http_server_buf ,1000);
board_delay_ms(200, 1);

(continues on next page)

3.2. Advanced labs 55

ARC labs handbook, Release 2018.09

(continued from previous page)

//EMBARC_PRINTF("Alive\n");

if (strstr(http_server_buf, http_get) != NULL) {
EMBARC_PRINTF("============================ send

→˓============================\n");

EMBARC_PRINTF("\nThe message is:\n%s\n", http_server_buf);

conn_buf = strstr(http_server_buf, http_IDP) + 5;

*(conn_buf+1) = 0;

EMBARC_PRINTF("Send Start\n");
board_delay_ms(10, 1);

esp8266_connect_write(esp8266, http_html_header, conn_buf,
→˓(sizeof(http_html_header)-1));

board_delay_ms(100, 1);

esp8266_connect_write(esp8266, http_html_body_1, conn_buf,
→˓(sizeof(http_html_body_1)-1));

board_delay_ms(300, 1);

esp8266_connect_write(esp8266, http_html_body_2, conn_buf,
→˓(sizeof(http_html_body_2)-1));

board_delay_ms(300, 1);

esp8266_CIPCLOSE(esp8266, conn_buf);

EMBARC_PRINTF("Send Finish\n");
}

}

return E_OK;
}

Steps

Hardware connection (as shown below)

56 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Modify the code

Change the WiFi account and password set in the code to connect the particular wifi(as shown below).

#define WIFI_SSID "\"embARC\""
#define WIFI_PWD "\"qazwsxedc\""

Compile and download

Compile and download the program, after downloading successfully, the relevant download information is dis-
played in the command window(as shown in the following example).

[DIGILENT] This device supports JTAG7 scan formats.
[DIGILENT] Device enumeration: #0 is `IoTDK'=DesignWare ARC SDP.
[DIGILENT] We choose device : #0 `IoTDK' from 1 possible devices.
[DIGILENT] Product=507 variant=1 fwid=56 firmware-version=10a.
[DIGILENT] It is possible to set the JTAG speed.
[DIGILENT] Current speed is 10000000 Hz.
[DIGILENT] Attempting to set speed to 8000000 Hz.
[DIGILENT] Speed was set to 7500000 Hz.
[DIGILENT] Suppress these messages with environment variable DIG_VERBOSE=0.
Initializing. System name is ARC_DLL; my DLL was C:/ARC/MetaWare/arc/bin/freertos.
freeRTOS: there are 10 task priorities.

At this point, feedback information is shown on your serial port console, representing the process of the board
establishing connection with http server with AT command (showing below).

embARC Build Time: Nov 22 2018, 14:35:34
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1 (branches/release_40)
=========================== Init ============================
[at_parser_init]57: obj->psio 0x800066c8 -> 0x80001330
[at_send_cmd]87: command is NULL, send AT test command
[at_send_cmd]131: at_out: "AT
" (4)
[at_get_reply]154: "AT

OK" (9)
============================ Set Mode ============================

(continues on next page)

3.2. Advanced labs 57

ARC labs handbook, Release 2018.09

(continued from previous page)

[at_send_cmd]131: at_out: "AT+CWMODE_CUR?
" (16)
[at_get_reply]154: "
AT+CWMODE_CUR?
+CWMODE_CUR:1

OK" (38)
CWMODE_CUR = 1
[at_send_cmd]131: at_out: "AT+CWMODE_CUR=3
" (17)
[at_get_reply]154: "
AT+CWMODE_CUR=3

OK" (24)
============================ Connect WiFi ============================
[at_send_cmd]131: at_out: "AT+CWLAP
" (10)
[at_get_reply]154: "
AT+CWLAP
+CWLAP:(0,"synopsys-guest",-71,"6c:f3:7f:a8:a1:21",1,-27,0)
+CWLAP:(5,"Synopsys",-70,"6c:f3:7f:a8:a1:22",1,-27,0)
+CWLAP:(0,"synopsys-guest",-94,"d8:c7:c8:43:5b:81",1,-19,0)
+CWLAP:(5,"Synopsys",-95,"d8:c7:c8:43:5b:83",1,-21,0)
+CWLAP:(0,"iFuture",-94,"d4:68:ba:06:65:4a",1,-16,0)
+CWLAP:(4,"iFuture_City",-93,"d4:68:ba:0e:65:09",3,-4,0)
+CWLAP:(3,"embARC",-62,"5e:e0:c5:4f:df:80",6,32767,0)

OK" (416)
Searching for WIFI "embARC"
WIFI "embARC" found! Try to connect
[at_send_cmd]131: at_out: "AT+CWMODE_CUR=1
" (17)
[at_get_reply]154: "
AT+CWMODE_CUR=1

OK" (24)
[at_send_cmd]131: at_out: "AT+CWJAP_CUR="embARC","qazwsxedc"
" (35)
[at_get_reply]154: "
AT+CWJAP_CUR="embARC","qazwsxedc"
WIFI DISCONNECT
WIFI CONNECTED
WIFI GOT IP

OK" (88)
WIFI "embARC" connect succeed
============================ Connect Server ============================
[at_send_cmd]131: at_out: "AT+CIPMUX=1
" (13)
[at_get_reply]154: "
AT+CIPMUX=1

OK" (20)
[at_send_cmd]131: at_out: "AT+CIPSERVER=1,80
" (19)
[at_get_reply]154: "
AT+CIPSERVER=1,80
no change

OK" (37)
============================ Show IP ============================

(continues on next page)

58 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

[at_send_cmd]131: at_out: "AT+CIFSR
" (10)
[at_get_reply]154: "
AT+CIFSR
+CIFSR:STAIP,"192.168.137.236"
+CIFSR:STAMAC,"5c:cf:7f:0b:5f:9a"

OK" (84)

Access server

The serial port feedback information above shows that the board has successfully connected to the target WiFi
through ESP8266. It is set to the server mode by using the AT command, and the IP address of the server is also
given.

At this point, use a PC or mobile phone to connect to the same WiFi, open a browser(recommend Google Chrome
for PC), and enter the IP address to see the static HTTP page. Notice the IP address that you enter should be the
same IP address shown in Show IP section at your serial port console. The content of your serial port console and
browser is shown below:

============================ send ============================

The message is:
0,CONNECT
1,CONNECT

+IPD,0,384:GET / HTTP/1.1
Host: 192.168.137.236
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
→˓like Gecko) Chrome/70.0.3538.102 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
→˓apng,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9

Send Start
[at_send_cmd]131: at_out: "AT+CIPSEND=0,44
" (17)
[at_get_reply]154: "AT+CIPSEND=0,44

OK" (22)
[at_get_reply]154: "
>
Recv 44 bytes

SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=0,93
" (17)
[at_get_reply]154: "
AT+CIPSEND=0,93

OK" (24)
[at_get_reply]154: "
>
Recv 93 bytes

SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=0,93

(continues on next page)

3.2. Advanced labs 59

ARC labs handbook, Release 2018.09

(continued from previous page)

" (17)
[at_get_reply]154: "
AT+CIPSEND=0,93

OK" (24)
[at_get_reply]154: "
>
Recv 93 bytes

SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPCLOSE=0
" (15)
[at_get_reply]154: "
AT+CIPCLOSE=0
0,CLOSED

OK" (32)
Send Finish
============================ send ============================

The message is:

+IPD,1,353:GET /favicon.ico HTTP/1.1
Host: 192.168.137.236
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
→˓like Gecko) Chrome/70.0.3538.102 Safari/537.36
Accept: image/webp,image/apng,image/*,*/*;q=0.8
Referer: http://192.168.137.236/
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9

Send Start
[at_send_cmd]131: at_out: "AT+CIPSEND=1,44
" (17)
[at_get_reply]154: "AT+CIPSEND=1,44

OK" (22)
[at_get_reply]154: "
>
Recv 44 bytes

SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=1,93
" (17)
[at_get_reply]154: "
AT+CIPSEND=1,93

OK" (24)
[at_get_reply]154: "
>
Recv 93 bytes

SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=1,93
" (17)
[at_get_reply]154: "
AT+CIPSEND=1,93

OK" (24)

(continues on next page)

60 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

[at_get_reply]154: "
>
Recv 93 bytes

SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPCLOSE=1
" (15)
[at_get_reply]154: "
AT+CIPCLOSE=1
1,CLOSED

OK" (32)
Send Finish

Exercises

Referring to the embARC documents, using ESP8266 and TCN75 temperature sensor to build http server to make
the page display the sensor temperature in real time.

3.2.3 BLE Communication

Purpose

• To get familiar with the wireless communication in IoT

• To get familiar with the usage of RN4020 BLE module on IoT Development Kit

• To learn the usage of APIs of RN4020 driver in embARC OSP

Requirements

The following hardware and tools are required:

• PC host

• A smartphone which supports BLE

• ARC GNU toolchain/MetaWare Development Toolkit

• ARC board (IoT Development Kit)

• embARC OSP package

3.2. Advanced labs 61

ARC labs handbook, Release 2018.09

• embarc_osp/arc_labs/labs/lab6_ble_rn4020

Content

The communication between smartphone and IoT Development Kit board with RN4020 BLE module.

• Setup RN4020 BLE module by using API of RN4020 driver.

• Connect smartphone and RN4020 by BLE, and check the data send by IoT Development Kit in smartphone.

• Send data from smartphone to IoT Development Kit board, and print this data value in terminal.

Principles

RN4020 BLE module is controlled by the user through input/output lines (that is physical device pins) and an
UART interface. The UART Interface supports ASCII commands to control/configure the RN4020 modules for
any specific requirement based on the application.

Setup

Before connecting an RN4020 module to a smartphone device, you might need to set up the RN4020 module as
follows.

1. Configure UART which is connected to RN4020 with these parameters: Baud rate - 115200, Data bits - 8,
Parity - None, Stop bits - 1

2. Set the WAKE_SW pin high to enter command mode

3. Run the command SF, 1 to reset to the factory default configuration

4. Run the command SN, IoT DK to set the device name to be “IoT DK”

5. Run the command SS, C0000001 to enable support of the Device Information, Battery Service, and User-
Defined Private Service

6. Run the command SR, 00002000 to set the RN4020 module as a server

7. Run the command PZ to clear all settings of the private service and the private characteristics

8. Run the command PS, 11223344556677889900AABBCCDDEEFF to set the UUID of user-defined private
service to be 0x11223344556677889900AABBCCDDEEFF

9. Run the command PC, 010203040506070809000A0B0C0D0E0F, 18, 06 to add private characteristic
0x010203040506070809000A0B0C0D0E0F to current private service. The property of this characteristic
is 0x18 (writable and could notify) and has a maximum data size of 6 bytes.

10. Run the command R, 1 to reboot the RN4020 module and to make the new settings effective

11. Run the command LS to display the services

The source code using the API of RN4020 driver in embARC OSP as follows.

rn4020_setup(rn4020_ble);
rn4020_reset_to_factory(rn4020_ble);

/* Set device Name */
rn4020_set_dev_name(rn4020_ble, "IoT DK");

/* Set device services */
rn4020_set_services(rn4020_ble, RN4020_SERVICE_DEVICE_INFORMATION |

RN4020_SERVICE_BATTERY |
RN4020_SERVICE_USER_DEFINED);

rn4020_set_features(rn4020_ble, RN4020_FEATURE_SERVER_ONLY);
(continues on next page)

62 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

rn4020_clear_private(rn4020_ble);

/* Set private service UUID and private characteristic */
rn4020_set_prv_uuid(rn4020_ble, RN4020_PRV_SERV_HIGH_UUID, RN4020_PRV_SERV_LOW_
→˓UUID);
rn4020_set_prv_char(rn4020_ble, RN4020_PRV_CHAR_HIGH_UUID, RN4020_PRV_CHAR_LOW_
→˓UUID, 0x18, 0x06, RN4020_PRIVATE_CHAR_SEC_NONE);

/* Reboot RN4020 to make changes effective */
rn4020_reset(rn4020_ble);

rn4020_refresh_handle_uuid_table(rn4020_ble);

Advertise

Run the command A to start advertisement. The source code using the API of RN4020 driver in embARC OSP as
follows:

rn4020_advertise(rn4020_ble);

Send data

Run the command SUW, 2A19, value to set the level of Battery. The source code using the API of RN4020 driver
in embARC OSP as follows:

while (1) {

rn4020_battery_set_level(rn4020_ble, battery--);

board_delay_ms(1000, 0);
if (battery < 30) {

battery = 100;
}

}

Note: About detailed usage of RN4020 BLE module, see RN4020 Bluetooth Low Energy Module User’s Guide.

Steps

Run project

Open the serial terminal emulator in computer (for example, Tera Term), set as 115200 baud, 8 bits data, 1 stop
bit and no parity, and connect to the IoT Development Kit board.

Open cmd from the folder embarc_osp/arc_labs/labs/lab6_ble_rn4020, input the command as follows:

make BOARD=iotdk TOOLCHAIN=gnu run

3.2. Advanced labs 63

ARC labs handbook, Release 2018.09

Then the output is displayed in the serial terminal.

Connection

Open the BLE browser APP in smartphone (for example, LightBlue in IOS), and scan for BLE
peripherals, connect the “IoT DK” device. Then the output is displayed in the serial terminal.

And the device information in displayed BLE browser APP.

64 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Communication

Read the data of Battery services in BLE browser APP. Check whether the data decreases gradually.

3.2. Advanced labs 65

ARC labs handbook, Release 2018.09

Write data in BLE browser APP. Check the received data in PC serial terminal.

66 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Exercises

Try to use the received data in IoT Development Kit board, and do some control by using GPIO. (for example,
LED on/off)

3.2.4 How to use FreeRTOS

3.2. Advanced labs 67

ARC labs handbook, Release 2018.09

Purpose

• To learn how to implement tasks in FreeRTOS operating system

• To learn how to register tasks in FreeRTOS

• To get familiar with inter-task communication of FreeRTOS

Requirements

The following hardware and tools are required:

• PC host

• GNU Toolchain for ARC Processors / MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embARC OSP package

• embarc_osp/arc_labs/labs/lab9_freertos

Content

This lab utilizes FreeRTOS v9.0.0, and creates 3 tasks based on embARC OSP. You should apply inter-task
communicating methods such as semaphore and message queue in order to get running LEDs result. You should
know the basic functions of FreeRTOS.

Principles

Background

Operating system is software that controls basic hardware and software resources and provides access to them as a
service for applications. In this sense applications that are used are said to be run on top of or inside the operating
system.

There are different kind of operating systems and many definitions of operating systems depending on the available
features. One of the main features of every operating system is how it organizes several tasks (programs) to work
together. Some operating systems execute only one task at the time (these are called single-tasking) other allow
multiple programs to work together (multi-tasking). Most common desktop operating systems are multi-tasking
(Linux, Windows, and so on).

As processors on which programs are executed are sequential devices, technically only single program can be
run at a time on a processor. However, multi-tasking does periodical switching between several tasks creating an
illusion that these tasks work in parallel. The part of operating system that does this work is called scheduler.
Scheduler is a routine that decides the order of execution of several tasks running on operating system.

Depending on scheduler multi-tasking algorithm operating systems are classified on real-time and non-real-time.
In desktop operating systems (Linux, Windows) the usual approach of scheduler is to try to distribute processor
time evenly between running application, so that each uses fair amount of resources. However, this approach
has significant drawback which is unpredictable times when specific task are running. On the other hand, some
applications (especially embedded) are time constrained and thus require deterministic execution of tasks. For
example, if embedded system is controlling industrial machinery and software application is controlling some
operation in the machine, which should be done at specific times disregarding of what other operations are pending.
For this purpose, schedulers in some operating systems are made in a way to start tasks and predefine times. Such
operating systems are called real-time operating systems (RTOS), because each task (application) running in RTOS
can specify specific time (in milliseconds or other real time unit) at which it should be started. To organize this for
several tasks, scheduler uses priorities set for tasks, so that if two applications requested to be called at the same
time, the one with higher priority gets the resources.

68 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

As resources becoming abundant for modern micro processors, the cost to run RTOS becomes increasingly in-
significant. RTOS also provides event-driven mode for better utilization of CPU with efficiency.

FreeRTOS is an implementation of RTOS specially designed to be compact, easy to use and freely available (under
GPL license with several exceptions). FreeRTOS source code is available for download at http://freertos.org and
for different processor it could be ported (architecture specific code needs to be changed) so that it can operate
on the specific processor. embARC OSP includes FreeRTOS port for DesignWare® ARC® processors that can
be used to run applications using RTOS. FreeRTOS contains all the basic features of RTOS: tasks, scheduler,
notifications, semaphores, mutexes, and so on.

Design

This lab implements a running LED light with 3 tasks on FreeRTOS. Despite using 3 tasks overkill for a running
LED, but it is beneficial for the understanding of FreeRTOS itself and inter-task communication as well.

The following is the flow chart of the program:

Realization

The following is the example code of system , including various initialization and task time delay.

#include "embARC.h"
#include "embARC_debug.h"
#include <stdlib.h>

static void task1(void *par);
static void task2(void *par);
static void task3(void *par);

(continues on next page)

3.2. Advanced labs 69

http://freertos.org

ARC labs handbook, Release 2018.09

(continued from previous page)

#define TSK_PRIOR_1 (configMAX_PRIORITIES-1)
#define TSK_PRIOR_2 (configMAX_PRIORITIES-2)
#define TSK_PRIOR_3 (configMAX_PRIORITIES-3)

// Semaphores
static SemaphoreHandle_t sem1_id;

// Queues
static QueueHandle_t dtq1_id;

// Task IDs
static TaskHandle_t task1_handle = NULL;
static TaskHandle_t task2_handle = NULL;
static TaskHandle_t task3_handle = NULL;

int main(void)
{

vTaskSuspendAll();

// Create Tasks
if (xTaskCreate(task1, "task1", 128, (void *)1, TSK_PRIOR_1, &task1_

→˓handle) != pdPASS){
/*!< FreeRTOS xTaskCreate() API function */
EMBARC_PRINTF("Create task1 Failed\r\n");
return -1;

} else {
EMBARC_PRINTF("Create task1 Successfully\r\n");

}

if (xTaskCreate(task2, "task2", 128, (void *)2, TSK_PRIOR_2, &task2_
→˓handle) != pdPASS){

/*!< FreeRTOS xTaskCreate() API function */
EMBARC_PRINTF("Create task2 Failed\r\n");
return -1;

} else {
EMBARC_PRINTF("Create task2 Successfully\r\n");

}

if (xTaskCreate(task3, "task3", 128, (void *)3, TSK_PRIOR_3, &task3_
→˓handle) != pdPASS){

/*!< FreeRTOS xTaskCreate() API function */
EMBARC_PRINTF("Create task3 Failed\r\n");
return -1;

} else {
EMBARC_PRINTF("Create task3 Successfully\r\n");

}

// Create Semaphores
sem1_id = xSemaphoreCreateBinary();
xSemaphoreGive(sem1_id);

// Create Queues
dtq1_id = xQueueCreate(8, sizeof(uint32_t));

xTaskResumeAll();
vTaskSuspend(NULL);

return 0;
}

(continues on next page)

70 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

static void task1(void *par)
{

uint32_t led_val = 0;

static portTickType xLastWakeTime;
const portTickType xFrequency = pdMS_TO_TICKS(10);

// Use current time to init xLastWakeTime, mind the difference with
→˓vTaskDelay()

xLastWakeTime = xTaskGetTickCount();

while (1) {
/* call Freertos system function for 10ms delay */
vTaskDelayUntil(&xLastWakeTime,xFrequency);

//####Insert code here###
}

}

static void task2(void *par)
{

uint32_t led_val = 0x0001;

static portTickType xLastWakeTime;
const portTickType xFrequency = pdMS_TO_TICKS(100);

// Use current time to init xLastWakeTime, mind the difference with
→˓vTaskDelay()

xLastWakeTime = xTaskGetTickCount();

while (1) {
/* call Freertos system function for 100ms delay */
vTaskDelayUntil(&xLastWakeTime,xFrequency);

//####Insert code here###
}

}

static void task3(void *par)
{

uint32_t led_val = 0;

static portTickType xLastWakeTime;
const portTickType xFrequency = pdMS_TO_TICKS(200);

// Use current time to init xLastWakeTime, mind the difference with
→˓vTaskDelay()

xLastWakeTime = xTaskGetTickCount();

while (1) {
/* call Freertos system function for 100ms delay */
vTaskDelayUntil(&xLastWakeTime,xFrequency);

//####Insert code here###
}

}

Steps

3.2. Advanced labs 71

ARC labs handbook, Release 2018.09

Build and run the uncompleted code

The code is at embarc_osp/arc_labs/labs/lab9_freertos, uses an UART terminal console and run
the code, the following message from program is displayed:

embARC Build Time: Mar 9 2018, 17:57:50
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1 (branches/release_40)
Create task1 Successfully
Create task2 Successfully
Create task3 Successfully

This message implies that three tasks are working correctly.

Implement task 3

It is required for task 3 to retrieve new value from the queue and assign the value to led_val. The LED controls
are already implemented in previous labs, the new function to learn is xQueueReceive(). This is a FreeRTOS
API to pop and read an item from queue. See FreeRTOS documentation and complete the code for this task. (An
example is in ‘complete’ folder)

Implement task 1

It is required for task 1 to check if value from queue is legal. If not, a reset signal is needed to be sent.

Two new functions might be helpful for this task: xSemaphoreGive() for release a signal and
xQueuePeek() for read item but not pop from a queue. See FreeRTOS documentation and complete the code
for this task. (An example is in ‘complete’ folder)

Do notice the difference between xQueueReceive() and xQueuePeek().

Implement task 2

There are two different works for task 2 to complete: to shift led_val and queue it, and to reset both led_val and
queue when illegal led_val is detected.

Three functions can be helpful: xQueueSend(), xSemaphoreTake(), xQueueReset(). See FreeRTOS
documentation and complete the code for this task. (An example is in ‘complete’ folder)

Build and run the completed code

Build the completed program and debug it to fulfill all requirements. (8-digit running LEDs are used in example
code)

Exercises

The problem of philosophers having meal:

Five philosophers sitting at a round dining table. Suppose they are either thinking or eating, but they cannot do
these two things at the same time. So each time when they are having food, they stop thinking and vice-versa.
There are five forks on the table for eating noddle, each fork is placed between two adjacent philosophers. It is
hard to eat noodles with one fork, so all philosophers need two forks in order to eat.

Write a program with proper console output to simulate this process.

72 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

3.2.5 ARC DSP: Compiler Optimizations

Purpose

• To understand Metaware compiler DSP extension options and optimization level

• To learn how to use Metaware compiler to optimize regular C code with DSP instructions

Requirements

The following hardware and tools are required:

• PC host

• MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/dsp_lab_compiler_opt

Content

An example code below contains a function “test” which contains a 20 step for loop and a multiply accumulate
operation done manually.

#include <stdio.h>

short test(short *a, short *b) {
int i;

long acc = 0;
for(i = 0; i < 10; i++)

acc += (((long)(*a++)) * *b++) <<1 ;

return (short) (acc);
}

short a[] = {1,2,3,4,5, 6,7,8,9,10};
short b[] = {11,12,13,14,15, 16,17,18,19,20};

int main(int argc, char *argv[]) {

short c = test(a,b);

printf("result=%d",c);

return 0;
}

Use Metaware compiler to optimize the C code with and without DSP extension options, and analyze the assembly
code.

Principles

This section describes compiler options in MetaWare used in this lab.

To optimize code with DSP extensions, two sets of compiler options are used throughout the lab: DSP Extensions
options and optimization level.

3.2. Advanced labs 73

ARC labs handbook, Release 2018.09

DSP Extensions Options

Use embARC OSP build system to compile the code. The details can be found in embARC OSP document page.
Here is the example command. You can pass extra compiler/liner options by ADT_COPT/ADT_LOPT.

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw ADT_COPT="-Hfxapi -Xdsp2
→˓" OLEVEL=O2

Options that are used in the lab are:

• -Xdsp[1/2]:

Enable DSP instructions

• -Xdsp_complex, -Xdsp_divsqrt:

Enable complex arithmetic DSP, divide, and sqrt instructions

• -Xdsp_ctrl[=up|convergent,noguard|guard, preshift|postshift]:

Fine-tune the compiler’s assumptions about the rounding, guard-bit, and fractional product shift behavior

• -Hdsplib: Link in the DSP library

For programming ARC fixed-point DSP in C and C++

Contains functions to carry out DSP algorithms such as filtering and transforms

• -Hfxapi: Use the Fixed Point API support library

Used with -Xdsp. Provides low level intrinsic support for ARC EM DSP instructions

Programs written using this API execute natively on an ARC EM processor with DSP extensions and can
also be emulated on x86 Windows hosts

• -Xxy: Specifies that XY memory is available

Used with -Xdsp2. Enables optimization for XY memory

• -Xagu_small, -Xagu_medium, -Xagu_large:

Enables AGU, and specifies its size

Note: Because ARC is configurable processor, different cores can contain different extensions on hardware level.
Therefore, options set for compiler should match underlying hardware. On the other hand, if specific hardware
feature is present in the core but compiler option is not set, it cannot be used effectively, if used at all. IOTDK
Core default options are presented in tcf file.

Optimization level

MetaWare compiler has different optimization levels, which enables or disables various optimization techniques
included in the compiler. You can pass the optimization option to gmake by “OLEVEL=O2”.

The lowest level is the default -O0, which does little optimization to the compiled assembly code, which can be
used for debugging, because in un-optimized assembly code all source code commands have 1:1 representation.
On the other hand, -O3 highest level optimization highly modifies output assembly code to make it smaller and
fast, but debugging such a code is harder, because it is not close match with source code. Also, high level of
optimization requires longer compilation time, which for large project can be significant, if many compilation
iterations are to be made.

74 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Optimization for DSP extensions

A regular code without direct usage of DSP extensions can be optimized to use DSP extensions wherever appli-
cable, which compiler can do automatically with DSP extension options corresponding to hardware are set and
high-level of optimization is selected.

Steps

1. Compiling with option -O0, DSP extensions will be specified in TCF file

Below is the list of options used when launching gmake:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw OLEVEL=O0

You can use the following command to generate disassembly code, and check assembly code for function “test”.

elfdump -T -S <your_working_directory>/obj_iotdk_10/mw_arcem9d/
dsp_lab1_mw_arcem9d.elf

Notice assembly code in the disassembled output. See how many assembly instruction are used for each line. For
example, for loop spends several instruction to calculate loop variable value and check whether to stop.

2. Compiling with DSP extensions, with -O2

Compile with:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw OLEVEL=O2

Adding optimization level -O2, optimizes out many of the instructions:

3.2. Advanced labs 75

ARC labs handbook, Release 2018.09

In this code it is easy to find zero-delay loop (“lp” command) which acts as for loop. Note that multiply-accumulate
is done with separate “mpyw_s” and “add1_s” instructions.

3. Compiling with DSP extensions, with -O3

Compile with:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw OLEVEL=O3

Adding -Xdsp1 (optimization level changed to -O3) helps compiler to optimize away “mpyw_s” and “add1_s”
instructions and replace them with hardware dual-16bit SIMD multilication “vmpy2h”. Notice the loop count is
now 5.

Exercises

Remove “<<1” from test function and see changes in the output instructions.

3.2.6 ARC DSP: Using FXAPI

76 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Purpose

• To understand what is ARC Fixed-point API (FXAPI)

• To learn how to use FXAPI to optimize DSP programs

Requirements

The following hardware and tools are required:

• PC host

• MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/dsp_lab_fxapi

Content

This lab uses complex number multiplication as an example where using just compiler optimization options cannot
gain the same effect as calling DSP instructions manually through FXAPI.

Principle

In this lab two implementations of complex multiplication are shown with and without FXAPI.

Complex number multiplication

Multiplication of two complex numbers and

Is done using formula:

In this lab example multiplication and accumulation of two arrays of complex numbers are used as a way to
compare performance of ARC DSP extensions when used effectively.

The sum of element wise products of two arrays of complex numbers is calculated according to the following
formula:

where a and b are arrays of N complex numbers.

Implementation without DSP

In order to calculate element wise products of two arrays of complex numbers, a struct can be defined that stores
real and imaginary parts of the complex number. Therefore, the calculation process receives an array of structures
and works on it. The code is shown below:

typedef struct { short real; short imag; } complex_short;

complex_short short_complex_array_mult (complex_short *a, complex_short *b, int
→˓size) {

complex_short result = {0,0};
int acci=0;

(continues on next page)

3.2. Advanced labs 77

ARC labs handbook, Release 2018.09

(continued from previous page)

int accr=0;

for (int i=0; i < size; i++) {
accr += (int) (a[i].real * b[i].real);
accr -= (int) (a[i].imag * b[i].imag);

acci += (int) (a[i].real * b[i].imag);
acci += (int) (a[i].imag * b[i].real);

}

result.real = (short) accr;
result.imag = (short) acci;

return result;
}

The example keeps real and imaginary values in variables of type “short”, while multiplication results are kept in
“int” integer to avoid truncation. Final result is casted to short to return complex number as a result.

Implementation with FXAPI

FXAPI makes it possible to directly access complex number instructions (like MAC) available in ARC
DSP Extensions. This is done through complex number type cq15_t, and various fx_* functions. Here
fx_v2a40_cmac_cq15 FXAPI function is called which performs MAC of two cq15_t complex numbers.

cq15_t fx_complex_array_mult(cq15_t *a, cq15_t *b, int size) {
v2accum40_t acc = { 0, 0 };

for (int i=0; i < size; i++) {
acc = fx_v2a40_cmac_cq15(acc, *a++, *b++);

}

return fx_cq15_cast_v2a40(acc);
}

As with previous implementation q15_t is of similar size as short type, therefore, multiplication result needs
larger storage. Here 40b vector accumulator is used directly to store intermediate results of MAC, and is casted to
cq15_t on return.

Using IoT Development Kit board for performance comparison

To compare performance of these two functions a simple application is created that performs complex array
multiplication using either of the implementations above. The program initializes two arrays of complex numbers
with random values and calls functions above in a loop (1 000 000-10 000 000 times) to make calculation delay
measurable in seconds. This is done eight times, and after each loop a LED on board turns-on. In the result, LED
strip on board works as a “progress bar” showing the process of looped multiplications.

The main performance check loop is shown in the following example. The outer loop runs 8 times (number of
LEDs on LED strip), the inner loop makes “LOOPS/8” calls to complex multiplication function. LOOPS variable
is configurable to change the total delay.

Steps

To test the following example, some modification of the code is required to have two loops with and without DSP.

Firstly you must build DSP libraries for this particular configuration of IOTDK:

buildlib my_dsp -tcf=<IOTDK tcf file> -bd ../ -f

78 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

IoT Development Kit tcf file can be found in embarc_osp/board/iotdk/configs/10/tcf/arcem9d.
tcf

Both examples are to be compiled with DSP extensions.

1. Run program without FXAPI

Build with the command:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw gui
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"

With high optimization level functions using “short” type is compiled to use DSP MAC operation, enabling sig-
nificant speedup.

2. Run program with FXAPI

Rename main.c.fxapi to main.c, then execute the command:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw gui
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"

However, using FXAPI enables compiler to directly use complex MAC instruction “cmachfr”.

3.2.7 ARC DSP: Using DSP Library

3.2. Advanced labs 79

ARC labs handbook, Release 2018.09

Purpose

• To understand what is ARC DSP library

• To learn how to use DSP library to optimize DSP programs

Requirements

The following hardware and tools are required:

• PC host

• MetaWare Development Toolkit

• ARC board (EM Starter Kit / IoT Development Kit)

• embarc_osp/arc_labs/labs/dsp_lab_dsp_lib

Content

This lab uses matrix multiplication as an example where DSP library helps to efficiently use DSP extensions with
shorter code. To use DSP Library and compare the execution speed of the programs with and without DSP library.

Principle

In this lab two implementations of matrix multiplication are shown: One manual implementation and the other
using the DSP library.

Matrix multiplication

Multiplication of two matrices A and B of sizes [M*N] and [N*K] respectively is implemented using the following
formula:

Where i= 0. . . (M-1) and j = 0..(K-1) are row and column indexes of output matrix, with size [M*K].

Implementation without DSP

The following example shows the implementation of matrix multiplication of two matrices containing “short”
values. By convention, matrices here are implemented as 1D arrays with row-first indexing, where element a_ik
is indexed as

#include "embARC.h"
#include "embARC_debug.h"
#include <stdlib.h>

#define MATRIX_SIZE 20
#define MAX_NUM 1000
#define LOOPS 100000

/* *** */

/* Matrix manipulation functions */

(continues on next page)

80 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

/* randomize matrix with values up to 'max_value */
void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) ;

/* multiply two square matrices of same size*/
void mul_sq_mat(short x[][MATRIX_SIZE], short y[][MATRIX_SIZE], short z[][MATRIX_
→˓SIZE], int size) ;

/* print square matrix through UART*/
void print_sq_mat(short x[][MATRIX_SIZE], int SIZE);

/* *** */

int main(int argc, char *argv[]) {

short a[MATRIX_SIZE][MATRIX_SIZE];
short b[MATRIX_SIZE][MATRIX_SIZE];
short c[MATRIX_SIZE][MATRIX_SIZE];
int n =MATRIX_SIZE;

rand_sq_mat(a,n, MAX_NUM);
rand_sq_mat(b,n, MAX_NUM);

print_sq_mat(a,n);
print_sq_mat(b,n);

unsigned int led_status = 0x40 ;
led_status = 0x7F;

EMBARC_PRINTF("*** Start ***\n\r");

for (int i =0; i< 8; i++) {
for (int j = 1; j < LOOPS/8; j++) {

mul_sq_mat(a,b,c,n);
};
led_write(led_status, BOARD_LED_MASK);
led_status = led_status >> 1;

}

print_sq_mat(c,n);

EMBARC_PRINTF("*** Exit ***\n\r");

return 0;
}

void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) {
for (int i=0;i<SIZE;i++) {

for(int j=0;j<SIZE;j++) {
x[i][j] = 1 + (rand() % max_value); //plus 1 to avoid zeros

}
}

}

void mul_sq_mat(short x[][MATRIX_SIZE],short y[][MATRIX_SIZE], short z[][MATRIX_
→˓SIZE], int size) {

for (int i=0; i<size; i++) {
for(int j=0;j<size;j++) {

z[i][j]=0;
for(int k=0;k<size;k++) {

(continues on next page)

3.2. Advanced labs 81

ARC labs handbook, Release 2018.09

(continued from previous page)

z[i][j] += x[i][k]*y[k][j];
}

}
}

}

void print_sq_mat(short x[MATRIX_SIZE][MATRIX_SIZE], int SIZE){

EMBARC_PRINTF("------\n\r");

for(int j = 0; j < SIZE; j++){
for(int i = 0; i < SIZE; i ++){

EMBARC_PRINTF("%d\t", x[j][i]);
}
EMBARC_PRINTF("\n\r");

}

EMBARC_PRINTF("------\n\r");
}

Implementation with DSPLIB

DSP library contains matrix multiplication function, implementing matrix multiplication using DSP library re-
quires initialization of matrix arrays (1D) and call to dsp_mat_mult_q15. The overall code is 4 lines, as
highlighted in the following code. Note that dsplib.h must be included, and matrix a, b, and c must be declared as
global variable. As the numbers are in q15 type, it is better to make elements of a and b between 32767 (~0.99)
and 16384 (0.5), or 32768(-1) and 49152 (-0.5) that the result in c is not rounded to zero. Note as IOTDK is
configured to have small AGU, the DSP library routine is not significantly faster.

#include "embARC.h"
#include "embARC_debug.h"
#include <stdlib.h>
#include "dsplib.h"

#define MATRIX_SIZE 20
#define MAX_NUM 1000
#define LOOPS 100000

/* *** */

/* Matrix manipulation functions */

/* randomize matrix with values up to 'max_value */
//void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) ;

/* multiply two square matrices of same size*/
void mul_sq_mat(short x[][MATRIX_SIZE], short y[][MATRIX_SIZE], short z[][MATRIX_
→˓SIZE], int size) ;

/* print square matrix through UART*/
void print_sq_mat(short* x, int SIZE);

/* *** */
__xy q15_t a[MATRIX_SIZE*MATRIX_SIZE];
__xy q15_t b[MATRIX_SIZE*MATRIX_SIZE];
__xy q15_t c[MATRIX_SIZE*MATRIX_SIZE];

int main(int argc, char *argv[]) {

(continues on next page)

82 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

(continued from previous page)

int n =MATRIX_SIZE;
matrix_q15_t matA, matB, matC;

//rand_sq_mat(a,n, MAX_NUM);
//rand_sq_mat(b,n, MAX_NUM);
for (int i =0; i< MATRIX_SIZE*MATRIX_SIZE; i++) { a[i]=16384; }
for (int i =0; i< MATRIX_SIZE*MATRIX_SIZE; i++) { b[i]=16383; }

print_sq_mat(a,n);
print_sq_mat(b,n);

dsp_mat_init_q15(&matA, MATRIX_SIZE, MATRIX_SIZE, a);
dsp_mat_init_q15(&matB, MATRIX_SIZE, MATRIX_SIZE, b);
dsp_mat_init_q15(&matC, MATRIX_SIZE, MATRIX_SIZE, c);
dsp_status status;

unsigned int led_status = 0x40 ;
led_status = 0x7F;

EMBARC_PRINTF("*** Start ***\n\r");

for (int i =0; i< 8; i++) {
for (int j = 1; j < LOOPS/8; j++) {

status = dsp_mat_mult_q15(&matA, &matB, &matC);
};
led_write(led_status, BOARD_LED_MASK);
led_status = led_status >> 1;

}

if (status == DSP_ERR_OK) EMBARC_PRINTF("done\n");
else EMBARC_PRINTF("something wrong");
print_sq_mat(c,n);

EMBARC_PRINTF("*** Exit ***\n\r");

return 0;
}

//void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) {
// for (int i=0;i<SIZE;i++) {
// for(int j=0;j<SIZE;j++) {
// x[i][j] = 1 + (rand() % max_value); //plus 1 to avoid zeros
// }
// }
//}
//
//void mul_sq_mat(short x[][MATRIX_SIZE],short y[][MATRIX_SIZE], short z[][MATRIX_
→˓SIZE], int size) {
// for (int i=0; i<size; i++) {
// for(int j=0;j<size;j++) {
// z[i][j]=0;
// for(int k=0;k<size;k++) {
// z[i][j] += x[i][k]*y[k][j];
// }
// }
// }
//}

(continues on next page)

3.2. Advanced labs 83

ARC labs handbook, Release 2018.09

(continued from previous page)

void print_sq_mat(short* x, int SIZE){

EMBARC_PRINTF("------\n\r");

for(int j = 0; j < SIZE; j++){
for(int i = 0; i < SIZE; i ++){

EMBARC_PRINTF("%d\t", x[i+j*SIZE]);
}
EMBARC_PRINTF("\n\r");

}

EMBARC_PRINTF("------\n\r");
}

Using IoT Development Kit board for performance comparison

Note: Create an IoT Development Kit application that uses LED strip as progress bar for large number of matrix
multiplications with and without DSP library, adjust number of loops made to achieve measurable delay. Run the
example and compare computational delay with and without DSPLIB.

Steps

Firstly you must build DSP libraries for this particular configuration of IOTDK:

buildlib my_dsp -tcf=<IOTDK tcf file> -bd ../ -f

IoT Development Kit tcf file can be found in embarc_osp/board/iotdk/configs/10/tcf/arcem9d.
tcf

Both examples are to be compiled with DSP extensions.

1. Run program without DSP library

Build with the command:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"

2. Run program with DSP library

Rename main.c.dsplib to main.c, then execute the command:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"

Note that DSPLIB is statically linked with the project when -Hdsplib is set, and as the DSPLIB itself is pre-
compiled with high level of optimization, changing optimization option for example program does not affect
DSPLIB performance. On the other hand, even with highest optimization level a function utilizing simple instruc-
tions on “short” type (even converted to MACs if possible) is less efficient that direct use of DSPLIB.

84 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

3.3 Exploration

3.3.1 AWS IoT Smarthome

Purpose

• Show the smart home solution based on ARC and AWS IoT Cloud

• Learn how to use the AWS IoT Cloud

• Learn how to use the EMSK Board peripheral modules and on-board resources

Equipment

Required Hardware

• [DesignWare ARC EM Starter Kit (EMSK)]

• [Digilent PMOD WiFi (MRF24WG0MA)]

• [Digilent PMOD TMP2]

• SD Card

• WiFi Hotspot (default SSID: embARC, Password: qazwsxedc, WPA/WPA2 encrypted)

Required Software

• MetaWare or ARC GNU Toolchain

• Serial port terminal (e.g. Putty, Tera-term or Minicom)

Hardware Connection (EMSK Board)

• Connect PMOD WiFi to J5, connect PMOD TMP2 to J2.

• Configure your hardware with proper core configuration.

3.3. Exploration 85

https://www.synopsys.com/dw/ipdir.php?ds=arc_em_starter_kit
https://store.digilentinc.com/pmodwifi-wifi-interface-802-11g/
https://store.digilentinc.com/pmod-tmp2-temperature-sensor/

ARC labs handbook, Release 2018.09

• The hardware resources are described at the table below.

Hardware Resources Represent
BUTTON R Livingroom Lights Control
LED 0-1 Livingroom Lights Status (On or Off)
BUTTON L Kitchen Lights Control
LED 2-3 Kitchen Lights Status (On or Off)
BUTTON X Front Door Lock Control
LED 4-5 Front Door Lock Status (On or Off)
LED 7 WiFi Connection Status (On for connected, Off for not)
LED X Node Working Status (toggling in 2s period if working well)
PMOD TMP2 Temperature Sensor
PMOD WiFi Provide WiFi Connection

Content

This lab provides instructions on how to establish connection between the EMSK and Amazon Web Services
Internet of Things (AWS IoT) cloud with a simulated smart home application. With the help of AWS IoT as a
cloud platform, devices can securely interact with cloud applications and other devices. AWS IoT also supports
MQ Telemetry Transport (MQTT) and provides authentication and end-to-end encryption.

This application is designed to show how to connect only 1 EMSK and AWS IoT Cloud using embARC. The
connection between EMSK and AWS IoT Cloud is secured by TLS.

Principles

This lab demonstrates the smart home solution based on EMSK by establishing the connection between EMSK
Board and AWS IoT Cloud. The AWS IoT Device C SDK for the embedded platform has been optimized and
ported for embARC.

In this lab application, the peripheral modules and on-board resources of EMSK board are used to simulate the
objects which are controlled and monitored in smart home scenario. The AWS IoT Cloud is used as the cloud host

86 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

and a controlling platform that communicates with the EMSK Board with MQTT protocol. A HTML5 Web APP
is designed to provide a dash board in order to monitor and control smart home nodes.

Steps

Creating and setting smart home node

1. Create an AWS account at [Amazon AWS Website]. Amazon offers various account levels, including a free
tier for AWS IoT.

2. Login AWS console and select AWS IoT.

3. Select an appropriate IoT server in the top right corner of the AWS IoT console page. As an example US
East (N. Virginia) server is selected, you may select other server as you see fit.

4. Create your smart home node in the thing registry and generate X.509 certificate for the node. Create an
AWS IoT policy. Then attach your smart home node and policy to the X.509 certificate.

Note: for more details, see [Using a Smart Home IoT Application with EMSK]

5. Download the root CA certificate from [here]. Rename it rootCA.crt. Copy the certificate files cert.crt,
privateKey.pem and rootCA.crt to folder cert/smarthome. Insert the SD card to your PC, and copy the
certificate folder cert to the SD Card root.

3.3. Exploration 87

https://aws.amazon.com/
http://embarc.org/pdf/embARC_appnote_how_to_use_smart_home_iot.pdf
https://www.symantec.com/content/en/us/enterprise/verisign/roots/VeriSign-Class%203-Public-Primary-Certification-Authority-G5.pem

ARC labs handbook, Release 2018.09

6. Open the [Web App] in a web browser and load the configuration file dashboard-smarthomesinglething.json
obtained from [embARC/example/freertos/iot/aws/smarthome_demo]. The dashboard can be loaded auto-
matically

7. Click ADD to go to DATASOURCE page and fill the forms.

a) TYPE: Choose AWS IoT.

b) NAME: Name is aws.

c) AWS IOT ENDPOINT: Go to AWS IoT console and click your smart home node “SmartHome”. Copy the
content XXXXXXXXXXXXXX.iot.us-east-1.amazonaws.com in REST API endpoint to AWS IOT
ENDPOINT.

88 Chapter 3. Hands-on labs

http://embarc.org/freeboard/
https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_applications/tree/master/aws_iot_smarthome

ARC labs handbook, Release 2018.09

d) REGION: Copy the AWS region of your smart home node in REST API endpoint to RE-
GION. For example, https://XXXXXXXXXXXXXX.iot.us-east1.amazonaws.com/things/
SmartHome/shadow. REGION is us-east-1.

e) CLIENT ID: Leave it blank as default.

f) ACCESS KEY and SECRET KEY: Go to AWS Services page and click IAM.

Go to user page and click Create New Users. Enter User Names AWSIoTUser. Then download user
security credentials, Access Key ID, and Secret Access Key. Copy Access Key ID to ACCESS KEY and
Secret Access Key to SECRET KEY.

3.3. Exploration 89

ARC labs handbook, Release 2018.09

Go to user page and click AWSIoTUser. Click Attach Policy to attach AWSIoTDataAccess to AWSIo-
TUser.

g) THINGS: AWS IoT thing name SmartHome.

h) Click Save to finish the setting.

Building and Running AWS IoT Smart Home Example

1. The AWS IoT thing SDK for C has been ported to embARC. Check the above steps in order for your
IoT application to work smoothly. Go to embARC/example/freertos/iot/aws/smarthome_demo. Modify
aws_iot_config.h to match your AWS IoT configuration. The macro AWS_IOT_MQTT_HOST can be
copied from the REST API endpoint in AWS IoT console. For example, https://XXXXXXXXXXXXXX.
iot.us-east-1.amazonaws.com/things/SmartHome/shadow. AWS_IOT_MQTT_HOST
should be XXXXXXXXXXXXXX.iot.us-east-1.amazonaws.com.

2. Use USB cable to connect the EMSK board. Set the baud rate of the terminal emulator to 115200.

3. Insert the SD Card into the EMSK board SD Card slot. Run the AWS IoT application using JTAG. Go to
embARC/example/freertos/iot/aws/smarthome_demo in command-line, run the following command:

make TOOLCHAIN=gnu BD_VER=22 CUR_CORE=arcem7d run

4. FreeRTOS-based runtime environment can be loaded automatically. Wait for WiFi initialization and con-
nection establishment (30 seconds or less) until the “WiFi connected” message is displayed in the terminal
emulator. “Network is ok” is displayed after the certificate files cert.crt, privateKey.pem, and rootCA.crt are
validated. The information in “reported”: {} is the state of the EMSK-based smart home node. “Updated
Accepted !!” means the connection works between the smart home node and AWS IoT cloud.

5. Try out functions of EMSK and Dashboard. You can press the button L/R/X to see LED toggling on board,
and the status of LEDs also changes on dashboard web app. You can also click the lights of DESIRED
STATUS pane on the dashboard app, and check the reactions of LEDs status on board and dashboard web
app.

90 Chapter 3. Hands-on labs

ARC labs handbook, Release 2018.09

Exercises

This application is designed to show how to connect only 1 EMSK and AWS IoT Cloud using embARC. Try to
add more nodes and implement a Multi-nodes AWS IoT Smarthome Demo.

Note: You could find related demo codes [here]

3.3. Exploration 91

https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_applications/tree/master/aws_iot_smarthome

ARC labs handbook, Release 2018.09

92 Chapter 3. Hands-on labs

CHAPTER 4

Appendix

4.1 Reference

1. Online docs

2. ARC EM Starter Kit Webpage

3. ARC IoT Development Kit Webpage

4. Github Repository of embARC Open Software Platform (OSP)

93

http://embarc.org/embarc_osp/
https://www.synopsys.com/dw/ipdir.php?ds=arc_em_starter_kit
https://www.synopsys.com/dw/ipdir.php?ds=arc_iot_development_kit
https://github.com/foss-for-synopsys-dwc-arc-processors/embarc_osp

ARC labs handbook, Release 2018.09

94 Chapter 4. Appendix

CHAPTER 5

Indices and tables

• genindex

• search

95

	Overview
	Introduction
	Supported Hardware Platform
	Reference

	Getting Started
	Software Requirement
	Install Software Tools
	Final Check
	Learn More

	Hands-on labs
	Basic labs
	Advanced labs
	Exploration

	Appendix
	Reference

	Indices and tables

