ARC labs handbook

Release 2018.09

Synopsys

2023

Contents:

1	Overview	1
	1.1 Introduction	1
	1.2 Supported Hardware Platform	2
	1.3 Reference	2
2	Getting Started	3
	2.1 Software Requirement	3
	2.2 Install Software Tools	4
	2.3 Final Check	7
	2.4 Learn More	7
3	Hands-on labs	9
	3.1 Basic labs	9
	3.2 Advanced labs	49
	3.3 Exploration	85
4	Appendix	93
	4.1 Reference	93
5	Indices and tables	95

CHAPTER 1

Overview

1.1 Introduction

This is a handbook for ARC labs which is a part of ARC university courses. The handbook is written to help students who attend the ARC university course. Anyone interested in DesignWare® ARC® processors can also take this handbook as a quick start-up to get started in DesignWare® ARC® processors development. In this handbook, all the basic elements of ARC are described in the labs with a step-by-step approach.

This handbook can be used as a Lab teaching material for ARC university courses at undergraduate or graduate level with majors in Computer Science, Computer Engineering, Electrical Engineering, or for professional engineers.

This handbook includes a series of labs (more labs will be added in the future), which are roughly classified into 3 levels:

• Level 1: ARC basic

The labs in this level cover the basic topics of DesignWare® ARC® processors. For example, the installation and usage of hardware and software tools, software or hardware development kits, the first hello world example, interrupt handling and internal timers of DesignWare® ARC® processors, and so on.

• Level 2: ARC advanced

The labs in this level cover the advanced topics of DesignWare® ARC® processors. For example, Real-Time Operating System (RTOS), customized linkage, compiler optimization, basic applications, DesignWare® ARC® processors DSP feature, and so on.

• Level 3: ARC exploration

The labs in this level cover some complex applications of DesignWare® ARC® processors. For example, Internet of Things (IoT) application, embedded machine learning, and so on.

Most of the labs are based on the embARC Open Software Platform (OSP) which is an open software platform to facilitate the development of embedded systems based on DesignWare® ARC® processors.

It is designed to provide a unified platform for DesignWare® ARC® processors users by defining consistent and simple software interfaces to the processor and peripherals together with ports of several well known Free and open-source software (FOSS) embedded software stacks to DesignWare® ARC® processors.

For more details about embARC OSP, please see its online docs.

1.2 Supported Hardware Platform

The following DesignWare® ARC® processors based hardware platforms are supported in this handbook.

- ARC EM Starter Kit
- ARC IoT Development Kit

You can click the above links to get the platform's data sheet and user manual as a reference.

1.3 Reference

Item	Name
1	ARC EM Databook
2 MetaWare docs	
3	ARC EM Starter Kit User Guide
4	ARC GNU docs

CHAPTER 2

Getting Started

Use this guide to get started with your ARC labs development.

2.1 Software Requirement

- ARC Development Tools Select MetaWare Development Toolkit or GNU Toolchain for ARC Processors from the following list according to your requirement.
 - MetaWare Development Toolkit
 - Premium MetaWare Development Toolkit (2018.06). The DesignWare ARC MetaWare Development Toolkit builds upon a 25-year legacy of industry-leading compiler and debugger products. It is a complete solution that contains all the components needed to support the development, debugging, and tuning of embedded applications for the DesignWare ARC processors.
 - * DesignWare ARC MetaWare Toolkit Lite (2018.06). A demonstration or evaluation version of the MetaWare Development Toolkit is available for free from the Synopsys website. MetaWare Lite is a functioning demonstration of the MetaWare Development Toolkit with restrictions such as code-size limit of 32 Kilobytes and no runtime library sources. It is available for Microsoft Windows only.
 - GNU Toolchain for ARC Processors
 - * Open Source ARC GNU IDE (2018.03). The GNU Toolchain for ARC Processors offers all of the benefits of open source tools such as complete source code and a large install base. The ARC GNU IDE Installer consists of Eclipse IDE with ARC GNU plugin for Eclipse, ARC GNU prebuilt toolchain, and OpenOCD for ARC.
- Digilent Adept Software for Digilent JTAG-USB cable driver. All the supported boards are equipped with on board USB-JTAG debugger. One USB cable is required and external debugger is not required.
- Tera Term or PuTTY for serial terminal connection. The serial configurations are 115200 baud, 8 bits data, 1 stop bit, and no parity (115200-8-N-1) by default.

Note: If using embARC with GNU toolchain on Windows, please install Zadig to replace FTDI driver with WinUSB driver. See How to Use OpenOCD on Windows for more information. If you want to switch back to Metaware toolchain, make sure you switch back the usb-jtag driver from WinUSB to FTDI driver.

2.2 Install Software Tools

2.2.1 Install MetaWare Development Toolkit

Installing MetaWare Development Toolkit (2017.09).

1. Double click the mw_dekit_arc_i_2017_09_win_install.exe and click Next.

2. Select I accept and click Next.

3. Select Typical installation and click Next.

4. Set the install path (make sure you use English letters without any space) and click **Next** until the installation is complete.

MWDT		
-	Choose Insta	ll Folder
Introduction License Agreement Choose Install Set Choose Install Folder Choose Shortcut Folder Pre-Installation Summary	You may select a different location for the installation. Due to restrictions in the compiler and debugger, the path and folder name must not contain any	spaces.
O Installing	Where Would You Like to Install?	
Installing License File Install Complete	C: VARC	oose
Cancel	Previous	Next

- 5. Set the license file (SNPSLMD_LICENSE_FILE) for MetaWare Development Toolkit. It can be a real file containing license or a license server.
- For Windows, go to Computer > Properties > Advanced > Environment Variables > System Variables > New.

Edit System Variable		×
Variable name:	SNPSLMD_LICENSE_FILE	
Variable value:	27030@127.0.0.1]
Browse Directory	Browse File OK Cancel]

- For Linux, add SNPSLMD_LICENSE_FILE into your system variables.
- 6. Test the MetaWare Development Toolkit and the license

At the command prompt, compile and link in one step.

For example, find the queens.c in the demos folder of MetaWare Development Toolkit installation directory.

```
# On Windows
cd C:\ARC\MetaWare\arc\demos
ccac queens.c
```

If you get the following message without any error, then the MetaWare Development Toolkit is successfully installed.

```
MetaWare C Compiler N-2017.09 (build 005) Serial 1-799999.
(c) Copyright 1987-2017, Synopsys, Inc.
MetaWare ARC Assembler N-2017.09 (build 005)
(c) Copyright 1996-2017, Synopsys, Inc.
MetaWare Linker (ELF/ARCompact) N-2017.09 (build 005)
(c) Copyright 1995-2017, Synopsys, Inc.
```

2.2.2 Install GNU Toolchain for ARC Processors

Click (https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/releases) to get the latest version of GNU Toolchain for ARC Processors.

To use and install GNU Toolchain for ARC Processors, please see (http://embarc.org/toolchain/ide/index.html).

It is recommended to install GNU Toolchain for ARC Processors in the path (windows: C:\arc_gnu\, linux: ~/arc_gnu/) and add arc_gnu/bin into \$PATH variable.

2.2.3 Install embARC OSP

The embARC OSP source code is hosted in a GitHub repository that supports cloning through git. There are scripts in this repo that you are need to set up your development environment, and Git is used to get this repo. If you do not have Git installed, see the beginning of the OS-specific instructions below for help.

Using Git to clone the repository anonymously

You have successfully checked out a copy of the source code to your local machine.

2.2.4 Install ARC labs code

The source codes of ARC labs are assumed to work with embARC OSP. Please use git to clone or download the ARC labs to the root folder of embARC OSP. If the download is successful, the following folder structure is displayed:

osp
rd
ice
mple
labs
rary
dleware
ions

2.3 Final Check

Check the following items and set development environment.

- Make sure the paths of MetaWare Development Toolkit or GNU Toolchain for ARC Processors are added to the system variable **PATH** in your environment variables.
- It is recommended to install GNU Toolchain for ARC Processors to default location. Otherwise, you need to make additional changes as described.
 - If running and debugging embARC applications using arc-elf32-gdb and OpenOCD for ARC, make sure the path of OpenOCD is added to the PATH in your environment variables and modify OPENOCD_SCRIPT_ROOT variable in <embARC>/options/toolchain/toolchain_gnu.mk to your OpenOCD root path.
 - If running GNU program with using the GNU toolchain on Linux, modify the **OpenOCD** configuration file as Linux format with LF line terminators. **dos2unix** can be used to convert it.

Note: Check the version of your toolchain. The embARC OSP software build system is makefile-based. *make/gmake* is provided in the MetaWare Development Toolkit (gmake) and GNU Toolchain for ARC Processors (make)

2.4 Learn More

For more details about embARC OSP, see online docs

CHAPTER 3

Hands-on labs

3.1 Basic labs

3.1.1 How to use ARC IDE

MetaWare Development Toolkit

Purpose

- To learn MetaWare Development Toolkit
- To get familiar with the basic usage of the MetaWare Development Toolkit
- To get familiar with the features and usage of the MetaWare Debugger (mdb)

Requirements

The following hardware and tools are required:

- PC host
- MetaWare Development Toolkit
- nSIM simulator or ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/lab_core_test

Content

- Create a C project using the MetaWare Development Toolkit
- Import the code CoreTest.c from embarc_osp/arc_labs/labs/lab_core_test
- Configure compilation options to compile, and generate executable files.
- Start the debugger of MetaWare Development Toolkit and enter debug mode.

From two different perspectives of C language and assembly language, use the methods of setting breakpoint, single-step execution, full-speed executions, etc., combined with observing PC address, register status, global variable status, and profiling performance to analyze and debug the target program.

Principles

Use the MetaWare Development Toolkit to create projects and load code. In the engineering unit, configure the compilation options to compile code, debug, and analyze the compiled executable file.

Routine code CoreTest.c:

```
// This small demo program finds the data point that is the
// minimal distance from x and y [here arbitrarily defined to be (4,5)]
// #define/undefine '_DEBUG' precompiler variable to obtain
// desired functionality. Including _DEBUG will bring in the
// I/O library to print results of the search.
11
// For purposes of simplicity, the data points used in the computations
// are hardcoded into the POINTX and POINTY constant values below
#ifdef _DEBUG
#include "stdio.h"
#endif
#define POINTX {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
#define POINTY {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}
#define POINTS 10
#define GetError(x, y, Px, Py) \
    ((x-Px)*(x-Px) + (y-Py)*(y-Py))
int main(int argc, char* argv[]) {
   int pPointX[] = POINTX;
   int pPointY[] = POINTY;
   int x, y;
   int index, error, minindex, minerror;
   x = 4;
   y = 5;
   minerror = GetError(x, y, pPointX[0], pPointY[0]);
   minindex = 0;
   for(index = 1; index < POINTS; index++) {</pre>
            error = GetError(x, y, pPointX[index], pPointY[index]);
            if (error < minerror) {</pre>
                    minerror = error;
                    minindex = index;
            }
        }
#ifdef _DEBUG
   printf("minindex = %d, minerror = %d.\n", minindex, minerror);
   printf("The point is (%d, %d).\n", pPointX[minindex], pPointY[minindex]);
   getchar();
```

(continues on next page)

(continued from previous page)

#endif
return 0;
}

Steps

1. Create a project

Open the MetaWare Development Toolkit, create an empty project called demo, and select the ARC EM Generic processor.

M C Project	
C Project Create C project of selected type	
Project name: demo Use default location Location: C:\Users\jyshen\mide\workspace\demo	B <u>r</u> owse
Project type:	Toolchains:
 Executable Empty Project Hello World MetaWare C++ Project Hello World ANSI C Project Shared Library Static Library Static Library Makefile project Show project types and toolchains only if they are sup 	ARC 5 ARC 600 ARC 601 ARC 700 ARC EM Generic ARC EM4 ARC HS ARC Legacy ARC Legacy
(?) < Back	<u>N</u> ext > <u>Finish</u> Cancel

2. Import the code file CoreTest.c to the project demo.

In the Project Explorer, click ^a ⁽²⁾ demo and select **Import**.

In the Implort wizard, select **File system** from the **General** tab, then click **Next**. As shown in the following figure, in the From directory filed, type or browse to select the directory contain the file CoreTest.c. Recent directories that have been imported from are shown on the From directory field's combo box. In the left pane, check a folder that will import its entire contents into the Workbench, and in the right pane check the file CoreTest.c.

M Import	
File system Import resources from the local file system.	
From directory: C:\Users\jyshen\Desktop\ARC Univer	rsity\Ex4_ProfilingWithISS\Solution 👻 🛛 🛛 🖉 🖉
Solution	CoreTest.c
Filter Types Select All]
Into folder: demo	Bro <u>w</u> se
Options Overwrite existing resources without warning Create top-level folder Advanced >>	
? <u>Kack</u>	Next > Finish Cancel

Click Finish when done, the file CoreTest.c is now shown in the one of the navigation views in the project demo.

3. Set compilation options

From the Project Explorer view, right-click the project demo and choose Properties. Click C/C++ Build > Settings > Tool Settings menu options. The Tool Settings dialog opens.

Select **Optimization/Debugging** to set the compiler optimization and debugging level. For example, set the optimization level to turn off optimization, and set the debugging level to load all debugging information.

Select **Processor/Extensions** to set the compilation options corresponding to the target processor hardware properties, such as the version of the processor, whether to support extended instructions such as shift, multiplication, floating-point operations, and so on whether to include Timer0/1. As shown in the following figure, this setting indicates that the target processor supports common extended instructions.

Select MetaWare ARC EM C/C++ and check the settings compilation options. Click OK when done.

4. Build project

In the Project Explorer view, select project demo. Click **Project > Build Project** or click the icon on the toolbar. In the MetaWare Development Toolkit main interface, you can see in the **Console** view the output and results of the build command. Click on its tab to bring the view forward if it is not currently visible. If for some reason it's not present, you can open it by selecting **Window > Show View > Console**. When the message Finished building target: demo.elf is displayed, the compilation is successful, and the compiled executable file demo.elf can be seen in the Project Explorer.

5. Set debug options

Click the **Run > Debug Configurations...** menu option to open the **Debug Configurations** dialog. Double-click **C/C++ Application** or right-click **New** to create a new launch configuration.

M Debug Configurations	Andrea Andrea Alle	X
Create, manage, and run configuration	5	To the second se
Image: Second state of the second	Name: demo Main @* Arguments 25 Environm C/C++ Application: Debug\demo.elf Broject: demo Build (if required) before launching Build configuration: Enable auto build Use workspace settings Connect process input & output to a te	hent Debugger Debugger Debugger Debug Variables Search Project Browse Browse Debug Select configuration using 'C/C++ Application' Disable auto build Configure Workspace Settings erminal.
Filter matched 7 of 12 items		Apply Reyert Debug Close

If a project is selected in the Project Explorer view all data is automatically entered, take a moment to verify its accuracy or change as needed. Here you do not need to make any changes, just click **Debug** to enter the debugging interface.

6. Debug executable file demo.elf

You may be prompted to switch to the **Debug** perspective. Click **Yes**.

The Debug perspective appears with the required windows open. And the windows can be source code window, assembly code window, register window, global variable window, breakpoint window, function window, and so on.

W Debug - demo/CoreTestc - MetaWare IDE	With the Country Name of State	
<u>Eile Edit Source Refactor Navigate Search Project Bun Debugger Window Help</u>		
🙁 • 🔛 🗠 🖉 🖉 🖉 📓 👘 🖉 🐺 🗮 🗮 🖄 👘 👘 👘 👘	∦ • ∄ ৡ • ৡ • \$ • \$ • \$	Quick Access 📑 🗟 C/C++ 🏂 Debug
梦Debug ⊠ 输送 ▽□□	IIII Registers 🚧 Variables 💠 💁 Breakpoints 🛋 Modules	🖄 🐗 🖻 🦸 복 🙀 🛅 한 🍸 🖻
	Name V old angc > d' angc - > @ phoint? 0 > @ phoint? 0 > ob and 0 -	Albe \$4000000000000000000000000000000000000
CoreTest.c 🛙 🗆	E Outline No Disassembly 23	Goto: 🕞 💌 🖼 🛤 🌩 🙄 🗆
<pre>32 x = 4; 33 y = 5; 34 35 mineror = GetError(x, y, pPointX[0], pPointY[0]); 36 minidex = 0; 37 38 for(index = 1; index < POINTS; index++) { 39 error = GetError(x, y, pPointX[index], pPointY[index]); 40 41 if (error < minerror) { 42 minerror = error; 43 minindex = index; 44 } 44 minerror = error; 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 40 minerror = error; 41 minerror = error; 42 minerror = error; 43 minerror = error; 44 minerror = error; 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 40 minerror = error; 41 minerror = error; 42 minerror = error; 43 minerror = error; 44 minerror = error; 44 minerror = error; 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 40 minerror = error; 41 minerror = error; 42 minerror = error; 43 minerror = error; 44 minerror = error; 44 minerror = error; 45 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 4</pre>	25 int main(int argc, char* argv[]) { → main st.aw %r13,[%sp,-124] main+0x04 st %blink,[%sp,4] main+0x08 mov %r13,0 main+0x0c st_s %r13,[%sp,120] main+0x0e st_s %r0,[%sp,120] main+0x10 st_s %r0,%sp,72 26 int pPointX[] = POINTX; main+0x12 add_s %r0,%sp,72 26 int pPointX[] = POINTX; main+0x12 mov %r2,40 main+0x24 add_s %r0,%sp,32 27 int nPointY[] = POINTY; 27	; 0x1_0ddc =xend+0x04
🗟 Console 🕸 🧟 Tasks 🛃 Problems 🜔 Executables 🕷 Special Debugger Display 🐧 Call Stack		■ × ½ 🖳 🖬 🕼 🖉 = * 📬 * 🗆 🗆
demo [C/C++ Application] Debugger Engine [v4-2013.09-1 (8.12.1),1552,11132013.085202] (J/31/14 1:34 AM)		
		4784 -4 9984

In the C code window, right-click the code line number on the left side of the window, select **Toggle Breakpoint** or double-click the line number to set a breakpoint on. In the assembly code window, double-click a line of code to set a breakpoint on. You'll see a blue circle there indicating the breakpoint is set.

After the breakpoint is set, click **Run** > **Resume** or you can use the **Resume** button \blacksquare on the toolbar of the Debug view to run the program. The program runs directly to the nearest breakpoint. You can observe the current program execution and the relevant status information of the processor through the various windows as described in previous step. If you want to know more about the details of program execution and the instruction behavior of the processor, you can use the following three execution commands \bigcirc \bigcirc \bigcirc \bigcirc to perform single-step debugging. The icon $i \rightarrow$ can choose to step through a C language statement or an assembly instruction to match the status information of each window. It can be very convenient for program debugging. If you want to end the current debugging process, click \blacksquare . If you want to return to the main MetaWare Development Toolkit page, click C/C++ \blacksquare current.

7. Code performance analysis using the debugger

Based on the previous project demo, open the Compile Options dialog box in step 3 and set the Optimization

Level to -O0 in the **Optimization/Debugging** column. Then click to recompile the project, and click to enter the debugging interface. Click **Debugger** in the main menu of the debugging interface, select **Disassembly** from the menu drop-down menu, open the disassembly code window, and you can see that the program is paused at the entrance of the main() function. In the same way, select **Profiling** in the **Debugger** drop-down menu, open the performance analysis window and click **Debug**.

<table-of-contents> Profiling 🛛</table-of-contents>						
PC range:	Ŧ	8 🔻	16 👻 INT	ticks: /ailab	le 👻 🗙 🔯 Instruction counts	
Profile	of Instruction c	ounts:				*
-						
%	cumulative	self	num	avg.		E
total	count	count	calls	cnt/call	address name	
20.73	255	255	1	255	00010620 memchr	
8.21	356	101	1	101	00010404 _a5_strlen	
5.85	428	72	2	36	000108fc hl_message_ap	
5.04	490	62			00010b16ac_pop_nonev	
5.04	552	62	1	62	000104a0 memcpy	
5.04	614	62	1	62	00010d60 _vsmemcpy	
4.88	674	60	2	30	000106f8 _hl_send	
4.15	725	51	3	17	00010b84 priority_enq	
3.33	766	41	1	41	000101dc _mwcall_main	
3.25	806	40			00010040 _start	
1.95	830	24	2	12	00010b54ac_mc_va	
1.95	854	24			00010a98ac_push_13_to_1	
•					•	

The **Profiling** window displays the corresponding of the number of executed instructions of the program with each function under the current debug window. From left to right, the total number of executions of function instructions in the total number of executions of the entire program instruction, the total number of executions of the accumulated instructions, the total number of executions of the functions, the number of times the function is called, the number of including functions, the address of the function, and the name of the function. Through the relationship between the instruction information and the function in the Profiling window, it is very convenient to analyze the program efficiency and find the shortcoming of the program performance.

Use this project as an example to continue to introduce the use of the **Profiling** window. The program is paused at the entrance of the main() function and the **Profiling** window opens. The main() function is the main object of performance analysis optimization. The content displayed in the **Profiling** window is some function information initialized by the processor before the main() function is executed. Click \times in the **Profiling** window to clear the current information. If you click \swarrow , nothing is displayed, and it indicates that the cleaning is successful. Set a breakpoint at the last statement of the main() function (either C statement or assembly statement), and click \blacksquare in the **Profiling** window, and only the information related to the main() function is displayed. Therefore, flexible setting of breakpoints, combined with the clear function, can perform performance analysis on the concerned blocks.

እ Profiling 🛛							
Pr PC range:		- 🛃 🌆	8 - 16	▼ INT ticks: e	Ŧ	🗙 📖 Instruction counts	
% total	cumulative count	self count	num calls	avg. cnt/call	address	name	
83.36	2064	2064	20	103	00010a24	_mw_mpy_32x32y32	
13.17 3.47	2390 2476	326 86	2	43	000100c8 000104a0	main memcpy	

It can be seen that the multiplication library function _mw_mpy_32x32y32 in the main() function is called 20

times, and a total of 2064 instructions are executed, while the main() function itself executes only 326 instructions, and the memcpy function executes 86 instructions. It can be seen that the implementation of the multiplication function of the program consumes a large number of instructions, and the large number of instructions means that the processor spends a large number of computation cycles to perform multiplication operations. Therefore, multiplication is the shortcoming of current program performance. If you want to improve the performance of the program, you should consider how you can use fewer instructions and implement multiplication more efficiently.

Exercises

Enable MPY extension instructions by setting Multiply Option $-Xmpy_option = wlh1$ in step 3, it implements multiplication more efficiently with fewer instructions. Redo steps 4 - 7 to analyze with the debugger's Profiling function, observe the total number of instructions consumed by the main function, and compare it with the above Profiling result.

GNU Toolchain for ARC Processors

Purpose

- Learn the GNU Toolchain for ARC Processors
- · Familiar with the GNU Toolchain for ARC Processors
- Familiar with the functions and usage of the GNU Toolchain for ARC Processors debugger

Requirements

The following hardware and tools are required:

- PC host
- GNU Toolchain for ARC Processors
- nSIM simulator or ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/lab_core_test

Content

- Create a C project using GNU Toolchain for ARC Processors
- Import the code CoreTest.c from embarc_osp/arc_labs/labs/lab_core_test
- · Configure compilation options to compile, and generate executable files
- Start the GNU Toolchain for ARC Processors debugger to enter the debug mode

From two different perspectives of C language and assembly language, use the methods of setting breakpoint, single-step execution, full-speed executions, and so on combined with observing PC address, register status, global variable status, and profiling performance to analyze and debug the target program.

Principles

Use the GNU Toolchain for ARC Processors integrated development environment to create projects and load routine code. In the engineering unit, configure the compile option compilation routine code to debug and analyze the compiled executable file.

Steps

1. Create a project

Open the GNU Toolchain for ARC Processors, create an empty project called core_test, and select ARC EM series processor.

C Project	— 🗆 X
C Project	
Create C project of selected type	
Project name: core_test	
✓ Use default location	
ARC_GNU_IDE_W	/orkspace\core_test Browse
Choose file system: default	
Project type:	Toolsheins
 AXS102 Projects AXS103 Projects EM Starter Kit Projects Empty Project Hello World for EM SK 1.1 Project Hello World for EM SK 2 Project Empty Project For EM SK EM4 Empty Project For EM SK EM5D Empty Project For EM SK EM6 Empty Project For EM SK EM7D Executable Shared Library Makefile project Show project types and toolchains only if 	GNU Toolchain for ARC EM
(2) < <u>B</u> ack	Next > Einish Cancel

2. Import the code file CoreTest.c to the project demo

In the Project Explorer, right-click * ²⁵ core_test, and select Import..

In the Implort wizard, select **File system** from the **General** tab, then click **Next**. As shown in the following figure, in the From directory filed, type or browse to select the directory contain the file CoreTest.c. Recent directories that have been imported from are shown on the From directory field's combo box. In the left pane, check a folder that imports the contents into the Workbench, and in the right pane check the file CoreTest.c.

Import				\Box \times
File system				
Import resources from the local file sy	stem.			
From directory: C:\Users\songwei\Des	ktop\Lab\core_test		~	B <u>r</u> owse
Core_test		CoreTest.c		
Filter <u>Types</u> <u>S</u> elect All	Deselect All]		
Into folder: core_test				Bro <u>w</u> se
Options				
Overwrite existing resources without	ıt warning			
Create top-level folder	5			
<u>A</u> dvanced >>				
	< <u>B</u> ack	<u>N</u> ext >	<u>F</u> inish	Cancel

Click Finish when done, the file CoreTest.c is now shown in the one of the navigation views in the project core_test.

3. Set compilation options

From the Project Explorer view, right-click the project core_test and choose Properties. Click C/C++ Build > Settings > Tool Settings. The Tool Settings dialog opens.

type filter text > Resource Builders > C/C++ Build	Settings Configuration: Debug [Active]		 ← ▼ ⇔ ▼ Manage Configurations
Build Variables Environment Logging Settings Tool Chain Editc > C/C++ General Linux Tools Path Project References Run/Debug Settin > Task Repository Task Tags > Validation WikiText	 Tool Settings Build Steps Build Steps Build Steps Build Steps Debugging Additional Tools Additional Tools ARC ELF32 GCC Assembler Preprocessor Directories Warnings Miscellaneous ARC ELF32 GCC C Compiler Preprocessor Directories Optimization Warnings Miscellaneous S ARC ELF32 GCC C++ Compiler Preprocessor Directories Optimization Warnings Miscellaneous S ARC ELF32 GCC C++ Compiler Preprocessor Directories Optimization 	Id Artifact Binary Parsers E ARC EM (-mcpu) Endianness Multiply instructions (ARC EM) FPU Type (ARC EM) Barrel shifter (-mbarrel-shift Code density (-mcode-dense) Integer divide instructions (Bitscan instruction (-mnorm) Swap instruction (-mswap) TCF TCF path Use memory map from TCF	ARC EM (-mcpu=em) Little Endian (-mlittle-endian) none None er) sity) -mdiv-rem) i)
< >>	 Warnings Miscellaneous Miscellaneous ARC ELF32 GCC C Linker General Libraries Miscellaneous 		

Select **Debugging** to set the compiler optimization and debugging level. For example, set the optimization level to off optimization, and the debugging level is to load all debugging information.

Select **Processor** in the current interface to set the compile options corresponding to the target processor hardware attributes, such as the version of the processor, whether to support extended instructions such as shift, multiplication, floating-point operations, and so on whether to include Timer0/1.

In step 1, you built the project using the engineering template of EMSK, the corresponding necessary options have been set by default. If there is no special requirement, check the setting compile options in the All options column and click **OK** when done.

4. Build project

In the Project Explorer view, select project core_test.

Click **Project** > **Build Project** or click . In the middle of the GNU Toolchain for ARC Processors main interface, you can see in the **Console** view the output and results of the build command. Click the tab to bring the view forward if it is not currently visible. If for some reason it is not present, you can open it by selecting **Window** > **Show View** > **Console**. When the message Finished building target: Core_test. elf is displayed, the compilation is successful, and the compiled executable file Core_test.elf can be seen in the Project Explorer.

- > Similaries
 > Debug
 > core_test.elf [none/le]
 > CoreTest.o [none/le]
 > core_test.map
 > CoreTest.d
 > CoreTest.o.lst
 > makefile
 > objects.mk
 > sources.mk
 > subdir.mk
- > 🔝 CoreTest.c
- 5. Set debugger options

Click the **Run > Debug Configurations...** menu option to open the **Debug Configurations** dialog. Double-click **C/C++ Application** or right-click **New** to create a new launch configuration.

Debug Configurations			>
Create, manage, and run config	urations		Ś
3 100 ¥ ⊖ 3⊳ ▼	Name: core_test		
type filter text	Main Debugger Commands	ommon 🎉 Source 🖷 Environment 🖉 Terminal	
ARC C/C++ application	Project:		
C/C++ Application	core_test		Browse
Iiusongwei (1)	C/C++ Application:		
C/C++ Attach to Application	Debug/core_test.elf		
C/C++ Postmortem Debugger		Variables Search Project	Browse
C/C++ Remote Application	Build (if required) before launching		- <u>-</u>
- Lauren Group	Puild Configuration Select Automatically		
	Build Configuration, Select Automatically		
	O Enable auto build	O Disable auto build	
	Use workspace settings	Configure Workspace Settings	
ilter matched 8 of 14 items		Revert	Apply
(?)		<u>D</u> ebug	Close

If a project is selected in the Project Explorer view all data is automatically entered, take a moment to verify its accuracy or change as needed. As you use nSIM simulator to simulate EMSK development board, you need to modify the settings of Debugger, Common, and Terminal (this is because nSIM cannot be called directly in GNU IDE. Still needs GDB Server for indirect calls). The specific settings are as follows:

• Set Debugger->Gdbserver Settings

Name: core_test			
🖻 Main 🎋 Debugger	🗖 Commands 🖾 <u>C</u> ommon 🦻 Source 💐 Environment 🗖 T	erminal	
Stop on startup at:	main		^
Debugger Options			
Main Shared Libra	ies Gdbserver Settings		
ARC GDB Server: nSI	M		
Port-number: 49	105		
nSIM			
nSIM executable	C:\ARC\nSIM\nSIM\bin\nsimdrv.exe		Browse
✓ Use TCF?			
nSIM TCF path	$C:\ARC\nSIM\nSIM\etc\tcf\templates\em4_dmips.tcf$		<u>B</u> rowse
Use nSIM proper	ties file?		
nSIM properties file			Browse
TIL			
1 🖵	JIT threads		
GNU host I/O su	pport		
Enable Exception	11		~
		Rovert	Apply
		Neven	vhhiž
		<u>D</u> ebug	Close

Select nSIM as the **ARC GDB Server**, and the default **port number** is 49105. Note that **Use TCF** is enabled. Otherwise, the nSIM cannot work normally. The TCF start file is under *nSIM/nSIM/etc/tcf/templates* (the default installation path). If you have downloaded the MetaWare IDE, the default nSIM path is *C:/ARC/nSIM/nSIM/etc/tcf/templates*, and you can select a TCF file from this folder (depending on the version of the board you are simulating and the kernel model), as shown earlier.

• Pay attention to Debug in Common

lame: core_test								
🛚 Main 🎏 Debugger 🗖 Commar	ds 🗖 Common 🛛 🦩 Source 📼	Environment	Terminal					
Save as								
● L <u>o</u> cal file								
○ Shared file: \core_test				<u>B</u> rowse				
Display in favo <u>r</u> ites menu		Encoding						
✓ * Debug		Default - inherited (GBK)						
		Other ISO-88	359-1	×				
Standard Input and Output								
Allocate console (necessary f	or input)							
Allocate console (necessary f	or input)							
Allocate console (necessary f	or input)	Workspace	File System	Variables				
Allocate console (necessary fo Input Eile: Output File:	or input)	Workspace	File System	Variables				
 ✓ Allocate console (necessary fe ☐ Input Eile: Output File: 	or input)	Workspace	File System	Variables Variables				
Allocate console (necessary fr Input Eile: Output File:	or input)	Workspace Workspace	File System	Variables Variables				
Allocate console (necessary f Input Eile: Output File: Append Launch in background	or input)	Workspace <u>W</u> orkspace	File System File <u>S</u> ystem	Variables Variables				
Allocate console (necessary fr Input Eile: Output File: Append Launch in background	or input)	Workspace <u>W</u> orkspace	File System File <u>S</u> ystem	Variables Variables				
Allocate console (necessary f Input Eile: Output File: Append Launch in background	or input)	Workspace Workspace	File System File System Reyert	Variables Variables Apply				
Allocate console (necessary free input Eile: Output File: Append Launch in background	or input)	Workspace	File System File System Revert	Variables Variables Apply				

• Terminal settings

If you are using the EM Starter Kit, the terminal automatically selects the correct port number, and if you are using the emulator without a port, uncheck it as shown in the following figure.

Name: core_test	
🗈 Main 🎋 Debugger 🗖 Commands 🖾 Common 💱 Source 🕷 Environment 🗖 Ter	rminal
COM Ports: Please connect to EM Starter Kit 🗸 🗌 Launch Terminal	
	Revert Apply
	Debug
	<u>D</u> ebug Close

When you are done, click **Debug** to enter the debugging interface.

6. Debug executable file core_test.elf

You may be prompted to switch to the **Debug** perspective. Click **Yes**.

The Debug perspective appears with the source code window, assembly code window, register window, global variable window, breakpoint window, function window, and so on.

1、日本学会、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1、1						Quick Access	11 🗟 c c	·•• 🕅	Debug	
學 Debug II 资料 学生		III Registers M+ Variables	11 % Breakp	points 📫 Modul	6		約4日	r x % 📫	C *	C
Commo (OC Application) All Metrikov Debugger (JULA 104 AM/ (Suspended) All Metrikov Debugger (JULA 104 AM/ (Suspended) Debugger (JULA 104 AM/ (Suspended) Debugger (JULA 104 AM/ (Suspended)) Junecit, univel 0 40000003 Junecit, univel 0 40000032 Junecit, univel 0 4000032 Junecit, univel 0		Nama 60 angc 9 40 angc 10 plointX 9 10 plointX 90 x 90 y 90 x 90 y 90 x 90				Value -209488145 2xefefefef 063770867 0634759531 1319907676 1201079405			_	
ConvText.e 22		🔐 Outline 🕱 Disassam	ay 20			6	leta	- et 🔳 🗄	127 +	° (
<pre>32 x = 4; 33 y = 5; 34 35 mineror = GetError(x, y, pPointX[0], pPointY[0]); 36 minindex = 0; 37 38 for(index = 1; index < POINTS; index++) { 39 error = GetError(x, y, pPointX[index], pPointY[index]); 40 41 if (error < minerror) { 42 minerror = error; 43 minindex = index; 44 } 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 41 minerror = error; 43 minindex = index; 44 } 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 41 minerror = error; 42 minerror = error; 43 minindex = index; 44 } 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 40 minerror = error; 41 minerror = error; 42 minerror = error; 43 minerror = error; 44 minerror = error; 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 40 minerror = error; 41 minerror = error; 42 minerror = error; 43 minerror = error; 44 minerror = error; 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror = error; 41 minerror = error; 41 minerror = error; 42 minerror = error; 43 minerror = error; 44 minerror = error; 45 minerror = error; 46 minerror = error; 47 minerror = error; 48 minerror = error; 48 minerror = error; 49 minerror = error; 40 minerror</pre>		25 int m → main main+0x04 main+0x08 main+0x0e main+0x0e main+0x12 26 main+0x14 main+0x24 main+0x24 27	ain(int st.aw st. st_s st_s st_s add_s int p mov bl add_s int n	argc, cha %r %b %r %r %r %r %r %r %r %r %r %r	r* argv(]) (13,[%sp,-124 11nk,[%sp,4] 13,0 (%sp,120] 0,[%sp,120] 0,[%sp,121] 0,%sp,72 = POINTX; 1,0x1_0ddc 2,40 mcpy 0,%sp,32 = POINTY:] ; 0x1_0dd	lc =xend+8x8	34		¢

In the C code window, right-click the code line number on the left side of the window, select **Toggle Breakpoint** or double-click the line number to set a breakpoint on. In the assembly code window, double-click a line of code to set a breakpoint on. A blue circle is seen indicating the breakpoint is set.

After the breakpoint is set, click **Run** > **Resume** or you can use the **Resume** button \blacksquare on the toolbar of the Debug view to run the program. The program runs directly to the nearest breakpoint. You can observe the current program execution and the relevant status information of the processor through the various windows as described in previous step. If you want to know more about the details of program execution and the instruction behavior of the processor, you can use the following three execution commands \blacksquare or perform single-step debugging. The icon $i \Rightarrow$ can choose to step through a C language statement or an assembly instruction to match the status information of each window. It can be very convenient for program debugging. If you want to end the current debugging process, click \blacksquare . If you want to return to the main GNU Toolchain for ARC Processors page, click

С/С++ ⊯скен (скена).

7. Code performance analysis using the debugger

Same as the code performance analysis method of MetaWare Development Toolkit.

For the use of these two IDEs, you can refer to the Help documentation in the respective IDE, or you can view the on-line documentation provided by Synopsys.

3.1.2 How to use embARC OSP

Purpose

- To know the concept of embARC OSP
- To know how to run examples in embARC OSP
- To know how to debug the examples in embARC OSP
- To know how to create application in embARC OSP

Requirements

The following hardware and tools are required:

- PC host
- GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embARC OSP packages

For the detailed tool requirements of embARC OSP, see Software Requirement.

Content

- A brief introduction of embARC OSP
- Get embARC OSP and run and debug the provided examples
- Create an embARC OSP application

Principles

1. IoT OS/Platform

As more and more devices are connected and become more complex, the tools running in them are becoming more and more complex.

An IoT OS is an operating system that is designed to perform within the constraints that are particular to Internet of Things devices, including restrictions on memory, size, power, and processing capacity. IoT operating systems are a type of embedded OS but by definition are designed to enable data transfer over the Internet and more other features.

2. embARC OSP

The embARC OSP is an open software platform to facilitate the development of embedded systems based on DesignWare® ARC® processors.

It is designed to provide a unified platform for DesignWare® ARC® processors users by defining consistent and simple software interfaces to the processor and peripherals, together with ports of several well known FOSS embedded software stacks to DesignWare® ARC® processors.

For more details, see embARC OSP online documentation

3. Other platforms

Besides embARC OSP, there are also other IoT platforms:

- Zephyr
- Amazon FreeRTOS

Steps

Get embARC OSP

• git

The embARC OSP source code is hosted in a GitHub repository. The repository consists of scripts and other things to you need to setup your development environment, and use Git to get this repo. If you do not have Git installed, see the beginning of the OS-specific instructions for help.

Using Git to clone the repository anonymously.

You have checked out a copy of the source code to your local machine.

· http download

You may also try to get the latest release of embARC OSP as a zip from the repository, see release page.

Run the examples

The command-line interface is the default interface to use embARC OSP. After getting the embARC OSP package, you need to open a **cmd** console in Windows or a **terminal** in Linux and change directory to the root of embARC OSP.

Use the **blinky** as an example.

1. Go to the blinky example folder

cd example\baremetal\blinky

- 2. Connect your board to PC host, and open the UART terminal with putty/tera term/minicom
- 3. Build and run it with command, here ARC GNU toolchain is selected

```
# For EMSK 2.3
make TOOLCHAIN=gnu BOARD=emsk BD_VER=23 CUR_CORE=arcem11d run
# For EMSK 2.2
make TOOLCHAIN=gnu BOARD=emsk BD_VER=22 CUR_CORE=arcem7d run
# For IoTDK
make TOOLCHAIN=gnu BOARD=iotdk run
```

Note: For EM Starter Kit, make sure the board version (BD_VER) and core configuration (CUR_CORE) match your hardware. You could press configure button (located above the letter "C" of the ARC logo on the EM Starter Kit) when bit 3 and bit 4 of SW1 switch is off to run a self-test. By doing so, board information is sent by UART and displayed on your UART terminal.

- 4. Get the results
- For EMSK, you can see the on-board LEDs start to blink when the download is successful.
- For IoTDK, as it does not have usable LEDs except some status LEDs, the following output log is displayed through UART.

led out: ff, ff led out: ff00, ff led out: ff, ff

Debug the examples

Use the **blinky** as example, to debug it, you need to run the following commands:

```
# For emsk 2.3
make TOOLCHAIN=gnu BOARD=emsk BD_VER=23 CUR_CORE=arcem11d gui
# For emsk 2.2
make TOOLCHAIN=gnu BOARD=emsk BD_VER=22 CUR_CORE=arcem7d gui
# For IoTDK
make TOOLCHAIN=gnu BOARD=iotdk gui
```

For MetaWare Development Toolkit, the mdb (MetaWare debugger) is used and it is a GUI interface. You can refer the MetaWare toolchain user manual for details.

For GNU Toolchain for ARC Processors, the command-line based gdb is used. You need to have some basic knowledge of gdb debug.

Create your own application

Create your own application in embARC OSP.

- Goals
 - Bare-metal application based on embARC OSP
 - Hardware: EMSK 2.2 ARC EM7D Configuration / IoTDK
 - Print "Hello world from embARC" through UART at 115200 bps
 - Use GNU toolchain to running and debugging in the command line
- 1. Create a folder named hello_world under embarc/example/baremetal.
- 2. Copy the makefile template example/example.makefile and main.c.tmpl into hello_world folder and rename example.makefile to makefile, rename main.c.tmpl to main.c.
- 3. Change the configurations in makefile according to your hardware configuration and application.
 - Change the application name: change the value of APPL to helloworld.

- Change the board name: change the value of BOARD to emsk / iotdk. This option can also be given in command-line. If not specified, the default value is emsk
- Change the board version: change the value of BD_VER to 22 (for emsk) or 10 (for iotdk). This option can also be given in command-line. If not specified, the default value is 22 for board emsk.
- Change the core configuration: change the value of CUR_CORE to arcem7d This option can also be given in command-line. If not specified, the default is arcem7d for board emsk and version 22. For iotdk, CUR_CORE can be bypassed as iotdk only has one core configuration.
- Change the embARC OSP root: change the value of EMBARC_ROOT to ../../... EMBARC_ROOT can be relative path or an absolute path.
- Add the middleware that you need for this application: Change the value of MID_SEL.
 - The value of MID_SEL must be the folder name in <embARC>/middleware, such as common or lwip.
 - If using lwip, ntshell, fatfs, and common, set MID_SEL to lwip ntshell fatfs common.
 - Set it to common in the "HelloWorld" application.
- Change your toolchain: change the value of TOOLCHAIN to gnu.
- Update source folders and include folder settings.
 - Update the C code folder settings: change the value of APPL_CSRC_DIR to .. APPL_CSRC_DIR is the C code relative path to the application folder
 - Update the assembly source-folder settings: change the value of APPL_ASMSRC_DIR.
 - Update the include-folders settings: change the value of APPL_INC_DIR which is the application include path to the application folder.
 - If more than one directory is needed, use whitespace between the folder paths.
- Set your application defined macros: Change the value of APPL_DEFINES.
 - For example, if define APPLICATION=1, set APPL_DEFINES to -DAPPLICATION=1.

Then makefile for hello world application will be like this

```
## embARC application makefile template ##
### You can copy this file to your application folder
### and rename it to makefile.
##
##
# Application name
##
APPL ?= helloworld
##
# Extended device list
##
EXT_DEV_LIST +=
# Optimization level
# Please refer to toolchain_xxx.mk for this option
OLEVEL ?= O2
##
# Current board and core (for emsk)
##
BOARD ?= emsk
BD VER ?= 22
CUR_CORE ?= arcem7d
```

(continues on next page)

```
(continued from previous page)
```

```
##
# Current board and core (for iotdk)
BOARD ?= iotdk
BD_VER ?= 10
##
# Debugging JTAG
##
JTAG ?= usb
##
# Toolchain
##
TOOLCHAIN ?= gnu
##
# Uncomment following options
# if you want to set your own heap and stack size
# Default settings see options.mk
##
#HEAPSZ ?= 8192
#STACKSZ ?= 8192
##
# Uncomment following options
# if you want to add your own library into link process
# For example:
# If you want link math lib for gnu toolchain,
# you need to set the option to -lm
##
#APPL_LIBS ?=
##
# Root path of embARC
##
EMBARC_ROOT = .../..
##
# Middleware
##
MID_SEL = common
##
# Application source path
##
APPL_CSRC_DIR = .
APPL_ASMSRC_DIR = .
##
# Application include path
##
APPL_INC_DIR = .
##
# Application defines
##
APPL_DEFINES =
##
```

(continues on next page)

(continued from previous page)

```
# Include current project makefile
##
COMMON_COMPILE_PREREQUISITES += makefile
### Options above must be added before include options.mk ###
# Include key embARC build system makefile
override EMBARC_ROOT := $(strip $(subst \,/,$(EMBARC_ROOT)))
include $(EMBARC_ROOT)/options/options.mk
```

4. Run

- Set your EM Starter Kit 2.2 hardware configuration to ARC EM7D (no need to set to IoT Development Kit), and connect it to your PC. Open PuTTY or Tera-term, and connect to the right COM port. Set the baud rate to **115200 bps**.
- Enter make run in the command-line to run this application.

Exercises

Create your application which is different with blinky and hello_world in embARC OSP.

3.1.3 How to use ARC board

Purpose

- To get familiar with the usage of ARC board and on-board peripherals
- To know how to program and debug the ARC board and on-board peripherals

Requirements

The following hardware and tools are required:

- PC host
- GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/lab5_emsk/embarc_osp/arc_labs/labs/lab5_iotdk

Content

- A brief introduction of ARC board and on-board peripherals
- Based on embARC OSP, program the GPIO to control some on-board peripherals

Note: About the detailed usage of embARC OSP, see How to use embARC OSP

Principles

EM Starter Kit

About the brief introduction of EM Starter Kit, see to embARC OSP Documentation

There are LEDs, DIP switches, and buttons on EM Starter Kit, this lab shows how to program the GPIO to control these on-board peripherals of EM Starter Kit. The code for this lab is located in <code>embarc_osp/arc_labs/labs/labs_emsk</code>. In the code, the on-board buttons and DIP switches' values are read, and whether LEDs are on or off depend on the value of the buttons and DIP switches.

IoT Development Kit

About the brief introduction of IoT Development Kit, see embARC OSP Documentation

Steps

EM Starter Kit

- 1. Connect EM Starter Kit to your computer, select em7d configuration and open UART terminal.
- 2. Compile and run the embarc_osp/arc_labs/lab5_emsk example with the following commands:

cd /arc_labs/lab5_emsk make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run

3. Press the buttons (L or/and R) and toggle the DIP switches (3 or/and 4), then check the result in UART terminal, and watch the changes of on-board LEDs.

IoT Development Kit

IoT Development Kit has an arduino interface, here select arduino digital pinout **ARDUINO_PIN_0(iotdk gpio4b_2[0])** to control LED.

- 1. Find a LED, connect the LED anode pin to **ARDUINO_PIN_0**, connect the LED cathode pin to **GND** of IoT Development Kit.
- 2. Connect the USB cable to the USB data port of IoT Development Kit and the computer.
- 3. Compile and run the embarc_osp/arc_labs/lab5_iotdk example with the following commands:

cd /arc_labs/lab5_iotdk make BOARD=iotdk TOOLCHAIN=gnu run

4. Watch the changes of external connected LED.

Note: The connection between LED and IoT Development Kit is just for test. A $1k\Omega$ resistor should be added in series connection to limited the current and prevent damage to I/O pin.

Exercises

Try to create you own application to control the peripherals of ARC board

Note: The ARC IoT Development Kit is powered over USB. Note that the ARC IoT Development Kit needs to be powered by an external power adapter if additional devices are connected to the extension interfaces. External power supply must be 5V DC (A 12V power supply will most probably damage your board).

3.1.4 ARC features: AUX registers and timers

Purpose

- To know the auxiliary registers and processor timers of DesignWare® ARC® processors
- To learn how to program auxiliary registers to control the processor timers

Requirements

The following hardware and tools are required:
- PC host
- GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/lab_timer

Content

- Through reading the corresponding Build Configuration Register (BCR) auxiliary registers of processor timers to get the configuration information
- Through programming the auxiliary registers to initialize, start and stop the timer (here TIMER0 is used)
- By reading the count value of processor timers, get the execution time of a code block

Principles

Auxiliary Registers

The auxiliary register set contains status and control registers, which by default are 32 bits wide to implement the processor control, for example, interrupt and exception management and processor timers. These auxiliary registers occupy a separate 32-bit address space from the normal memory-access (that is load and store) instructions. Auxiliary registers accessed using distinct Load Register (LR), Store Register (SR), and Auxiliary EXchange (AEX) instructions.

The auxiliary register address region 0x60 up to 0x7F and region 0xC0 up to 0xFF is reserved for the Build Configuration Registers (BCRs) that can be used by embedded software or host debug software to detect the configuration of the ARCv2-based hardware. The Build Configuration Registers contain the version of each ARCv2-based extension and also the build-specific configuration information.

In embARC OSP, arc_builtin.h provides API (arc_aux_read and arc_aux_read) to access the auxiliary registers.

Processor Timers

The processor timers are two independent 32-bit timers and a 64-bit real-time counter (RTC). **Timer0** and **Timer1** are identical in operation. The only difference is that these timers are connected to different interrupts. The timers cannot be included in a configuration without interrupts. Each timer is optional and when present, it is connected to a fixed interrupt; interrupt 16 for timer 0 and interrupt 17 for timer 1.

The processor timers are connected to a system clock signal that operates even when the ARCv2-based processor is in the sleep state. The timers can be used to generate interrupt signals that wake the processor from the SLEEP state. The processor timers automatically reset and restart their operation after reaching the limit value. The processor timers can be programmed to count only the clock cycles when the processor is not halted. The processor timers can also be programmed to generate an interrupt or to generate a system Reset upon reaching the limit value. The 64-bit RTC does not generate any interrupts. This timer is used to count the clock cycles atomically.

Through the BCR register 0x75, you can get the configuration information of processor timers

In embARC OSP, arc/arc_timer.h provides API to operate the processor timers.

Program flow chart

The code's flow is shown below:

The code can be divided into 3 parts:

- Part1 : read the BCR of internal timers to check the features
- Part2 : promgram Timer0 by auxiliary registers with the embARC OSP provided API
- Part3 : read the counts to Timer 0 to measure a code block's execution time

Steps

1. Build and Run

```
$ cd <embarc_root>/arc_labs/labs/lab_timer
# for emsk
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run
# for iotdk
$ make BOARD=iotdk TOOLCHAIN=gnu run
```

2. Output


```
\____|_| |_| |_|_._/_/ \_\_| \_\\___|
embARC Build Time: Aug 22 2018, 15:32:54
Compiler Version: MetaWare, 4.2.1 Compatible Clang 4.0.1 (branches/release_40)
Does this timer0 exist? YES
timer0's operating mode:0x00000003
timer0's limit value :0x00023280
timer0's current cnt_number:0x0000c236
Does this timer1 exist? YES
timer1's operating mode:0x0000000
timer1's limit value :0x0000000
timer1's current cnt_number:0x0000000
Does this RTC_timer exist?
                            NO
The start_cnt number is:2
/******* TEST MODE START *******/
This is TEST CODE.
This is TEST CODE.
This is TEST CODE.
/******* TEST MODE END *******/
The end_cnt number is:16785931
The board cpu clock is:144000000
Total time of TEST CODE BLOCK operation:116
```

Exercises

- 1. Try to program TIMER1
- 2. Try to create a clock with a tick of 1 second

3.1.5 ARC features: Interrupts

Purpose

- To introduce the interrupt handling of DesignWare® ARC® processors
- To know how to use the interrupt and timer APIs already defined in embARC OSP

Requirements

The following hardware and tools are required:

- PC host
- · GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/lab_interrupt

Content

- Through embarc_osp/arc_labs/labs/lab_interrupt/part1 to learn the basics of interrupt handling of DesignWare® ARC® processors and the interrupt API provided by embARC OSP
- Through embarc_osp/arc_labs/labs/lab_interrupt/part2 to learn the interrupt priority and interrupt nesting of DesignWare® ARC® processors and corresponding API of embARC OSP

Principles

1. Interrupt

An interrupt is a mechanism in processor to respond to special interrupt signals emitted by hardware or software. Interrupts can be used by processor to perform a specific function after some specific event happens and then return to normal operation. For this purpose there are many different types of interrupts possible to be issued by hardware and software and each interrupt can have it's own functions called Interrupt Service Routine (ISR). ISR is a function (sequence of commands) to deal with the immediate event generated by a given interrupt.

2. Interrupt unit of DesignWare® ARC® processors

The interrupt unit of DesignWare® ARC® processors has 16 allocated exceptions associated with vectors 0 to 15 and 240 interrupts associated with vectors 16 to 255. The ARCv2 interrupt unit is highly programmable and supports the following interrupt types:

- Timer triggered by one of the optional extension timers and watchdog timer
- Multi-core interrupts ---triggered by one of the cores in a multi-core system
- External available as input pins to the core
- Software-only triggered by software only

The interrupt unit of DesignWare® ARC® processors has the following interrupt specifications:

- Support for up to 240 interrupts
 - User configurable from 0 to 240
 - Level sensitive or pulse sensitive
- Support for up to 16 interrupt priority levels
 - Programmable from 0 (highest priority) to 15 (lowest priority)
- The priority of each interrupt can be programmed individually by software
- · Interrupt handlers can be preempted by higher-priority interrupts
 - Optionally, highest priority level 0 interrupts can be configured as "Fast Interrupts"
 - Optional second core register bank for use with Fast Interrupts option to minimize interrupt service latency by minimizing the time needed for context saving
- · Automatic save and restore of selected registers on interrupt entry and exit for fast context switch
- User context saved to user or kernel stack, under program control
- Software can set a priority level threshold in STATUS32.E that must be met for an interrupt request to interrupt or wake the processor
- Minimal interrupt / wake-up logic clocked in sleep state
 - Interrupt prioritization logic is purely combinational
- Any Interrupt can be triggered by software

The interrupt unit can be programmed by auxiliary registers. For more details, See DesignWare® ARC® processors ISA.

3. Interrupt API in embARC OSP

In embARC OSP, a basic exception and interrupt processing framework is implemented in embARC OSP. Through this framework, you can handle specific exceptions or interrupts by installing the desired handlers. This can help you analyze the underlying details of saving and operating registers. See here for detais.

The interrupt and exception related API are defined in arc_exception.h.

Steps

Part I: implement a customized timer0 interrupt handling

1. Build and Run

```
$ cd <embarc_root>/arc_labs/lab4_interrupt/part1
# for emsk
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run
# for iotdk
$ make BOARD=iotdk TOOLCHAIN=gnu run
```

2. Output

```
embARC Build Time: Mar 16 2018, 09:58:46
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1
This is an example about timer interrupt
/*******TEST MODE START******/
0s
1s
2s
3s
4s
5s
...
```

3. Code analysis

The code can be divided into three parts: interrupt service function, main function, and delay function.

• Interrupt service function:

```
static void timer0_isr(void *ptr)
{
    arc_timer_int_clear(TIMER_0);
    t0++;
}
```

This code is a standard example of an interrupt service routine: enters the service function, clears the interrupt flag bit, and then performs the processing that needs to be done in the interrupt service function. Other interrupt service functions can also be written using this template.

In this function, the count variable t0 is incremented by one.

• Main function

```
int main(void)
{
    int_disable(INTNO_TIMER0);
```

```
arc_timer_stop(TIMER_0);
int_handler_install(INTNO_TIMER0, timer0_isr);
int_pri_set(INTNO_TIMER0, INT_PRI_MIN);
EMBARC_PRINTF("\r\nThis is a example about timer interrupt.\r\n");
EMBARC_PRINTF("\r\n/******* TEST MODE START *******/\r\n\r\n");
int_enable(INTNO_TIMER0);
arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH, COUNT);
while(1)
{
    timer0_delay_ms(1000);
    EMBARC_PRINTF("\r\n %ds.\r\n", second);
    second ++;
}
return E_SYS;
```

The EMBARC_PRINTF function is only used to send information to the computer, which can be ignored during analysis.

This code is divided into two parts: initialization and looping.

In the initialization section, the timer and timer interrupts are configured.

This code uses the embARC OSP API to program **Timer0**. These two methods are the same. The API just encapsulates the read and write operations of the auxiliary registers for convenience.

First, in order to configure Timer0 and it's interrupts, turn them off first. This work is done by the functions int_disable and arc_timer_stop.

Then configure the interrupt service function and priority for our interrupts. This work is done by the functions int_handler_install and int_pri_set.

Finally, after the interrupt configuration is complete, enable the **Timer0** and interrupts that are previously turned off. This work is done by the functions int_enable and arc_timer_start. The implementation of the arc_timer_start function is the same as the reading and writing of the auxiliary registers in lab_timer. You can view them in the file arc_timer.c. One point to note in this step is the configuration of timer_limit (the last parameter of arc_timer_start). Configure the interrupt time to 1ms, do a simple calculation (the formula is the expression after COUNT).

In this example, the loop body only serves as an effect display. Delay function in the loop body to print the time per second is called.

Note: Since nSIM is only simulated by computer, there may be time inaccuracy when using this function. You can use the EMSK to program the program in the development board. In this case, the time is much higher than that in nSIM.

```
• Delay function
```

```
static void timer0_isr(void *ptr)
{
   t0 = 0;
   while(t0<ms);
}</pre>
```

This code is very simple and the idea is clear. When the function entered, clear the global variable t0. The interrupt interval is set to 1ms in the above arc_timer_start, assume that every time t0 is incremented, the time has passed 1ms.

Wait through the while(t0<ms) sentence, so that the full ms delay with higher precision is received.

Part II: interrupt priority and interrupt nesting

1. Build and Run

```
$ cd <embarc_root>/arc_labs/lab4_interrupt/part2
# for emsk
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu run
# for iotdk
$ make BOARD=iotdk TOOLCHAIN=gnu run
```

2. Output

```
embARC Build Time: Mar 16 2018, 09:58:46
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1
This test will start in 1s.
/*******TEST MODE START******/
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt nesting!
Interrupt
Interrupt
```

3. Code analysis

Interrupt

The code for PART II can be divided into two parts: the interrupt service routine and the main function.

• Interrupt service function

```
static void timer0_isr(void *ptr)
{
    arc_timer_int_clear(TIMER_0);
    timer_flag = 0;
    board_delay_ms(10, 1);
    if(timer_flag)
    {
        EMBARC_PRINTF("Interrupt nesting!\r\n");
    }
    else
    {
        EMBARC_PRINTF("Interrupt\r\n");
    }
```

```
hits++;
}
static void timer1_isr(void *ptr)
{
    arc_timer_int_clear(TIMER_1);
    timer_flag = 1;
}
```

Through the above code, when timer0's interrupt comes in and is serviced, different output messages are sent by ISR according to the value of *timer_flag*, which is only be set in timer1's ISR *timer1_isr*. This means timer0's interrupt is preempted by timer1's interrupt as it has a higher interrupt priority.

"Interrupt nesting!" indicates that interrupt nesting has occurred, and "Interrupt" indicates that it has not occurred.

• main function

```
int main(void)
{
        arc_timer_stop(TIMER_0);
        arc_timer_stop(TIMER_1);
        int_disable(INTNO_TIMER0);
        int_disable(INTNO_TIMER1);
        int_handler_install(INTNO_TIMER0, timer0_isr);
        int_pri_set(INTNO_TIMER0, INT_PRI_MAX);
        int_handler_install(INTNO_TIMER1, timer1_isr);
        int_pri_set(INTNO_TIMER1, INT_PRI_MIN);
        EMBARC_PRINTF("\r\nThe test will start in 1s.\r\n");
        int_enable(INTNO_TIMER0);
        int_enable(INTNO_TIMER1);
        arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH, MAX_COUNT);
        arc_timer_start(TIMER_1, TIMER_CTRL_IE | TIMER_CTRL_NH, MAX_COUNT/100);
        while(1)
        {
                if((hits >= 5) && (nesting_flag == 1)) {
                        arc_timer_stop(TIMER_0);
                        arc_timer_stop(TIMER_1);
                        int_disable(INTNO_TIMER0);
                        int_disable(INTNO_TIMER1);
                        int_pri_set(INTNO_TIMER0, INT_PRI_MIN);
                        int_pri_set(INTNO_TIMER1, INT_PRI_MAX);
                        nesting_flag = 0;
                        int_enable(INTNO_TIMER0);
                        int_enable(INTNO_TIMER1);
                        arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH,_
→MAX_COUNT);
                        arc_timer_start(TIMER_1, TIMER_CTRL_IE | TIMER_CTRL_NH,__
→MAX_COUNT/10);
                                                                       (continues on next page)
```

```
} else if((hits >= 10) && (nesting_flag == 0)) {
                        arc_timer_stop(TIMER_0);
                        arc_timer_stop(TIMER_1);
                        int_disable(INTNO_TIMER0);
                        int_disable(INTNO_TIMER1);
                        int_pri_set(INTNO_TIMER0, INT_PRI_MAX);
                        int_pri_set(INTNO_TIMER1, INT_PRI_MIN);
                        hits = 0;
                        nesting_flag = 1;
                        int_enable(INTNO_TIMER0);
                        int_enable(INTNO_TIMER1);
                        arc_timer_start(TIMER_0, TIMER_CTRL_IE | TIMER_CTRL_NH,_
→MAX_COUNT);
                        arc_timer_start(TIMER_1, TIMER_CTRL_IE | TIMER_CTRL_NH,_
→MAX_COUNT/100);
                }
       }
       return E_SYS;
```

First, the timer 0 and timer 1 are configured and install with corresponding ISR. Then in the while loop, the interrupt priority of timer 0 and timer 1 are periodically changed to make the interrupt nesting happen.

Exercises

}

Try using an interrupt other than a timer to write a small program. (For example, try to implement a button controlled LED using GPIO interrupt)

3.1.6 A simple bootloader

Purpose

- Understand the memory map of ARC boards
- Understand the principles of bootloader and self-booting
- Understand the usage of shell commands in cmd
- Create a self-booting application

Requirements

The following hardware and tools are required:

- PC host
- GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- SD card
- example/baremetal/bootloader

Simple Bootloader

This simple bootloader is designed to work as a secondary/simple bootloader for embARC OSP, it loads boot. hex or boot.bin on SD Card and run that program. The example can be used as ntshell application.

The following features are provided in this simple bootloader:

- Boot application from SD card
- File operations on SD card
- UART Y-modem protocol to update application
- Operations on ARC processors

Content

- 1. Build and run the <code>example/baremetal/bootloader</code>
- 2. Download the generated bootloader.bin into flash
- 3. Build a self-boot application and boot it from SD card
- 4. Use the ntshell commands

Principles

Memory Map of ARC board

EM Starter Kit

The available memory regions of EM Starter Kit are shown below:

Name	Start address	Size
on-chip ICCM	0x00000000	256/128 KB
on-chip DCCM	0x80000000	128 KB
on-board DDR RAM	0x10000000	128 MB

Table 1: Memory Map of EM Starter Kit

In this lab, the last 1 MB of DDR (starting from 0x17f00000) is reserved for the simple bootloader, other memory regions are available for application.

IoT Development Kit

The available memory regions of IoT Development Kit are shown in the following table:

Name	Start address	Size
on-chip eflash	0x00000000	256 KB
external boot SPI flash	0x1000000	2 MB
on-chip ICCM	0x20000000	256 KB
on-chip SRAM	0x30000000	128 KB
on-chip DCCM	0x80000000	128 KB
on-chip XCCM	0xC0000000	32 KB
on-chip YCCM	0xE0000000	32 KB

Table 2.	Memory	Man	of IoT	Develo	nment	Kit
$1 a \cup 1 \subset \mathcal{L}$.	WICHIOLY	ivian (люг		DIRCIR	M

In this lab, on-chip eflash and on-chip SRAM are reserved for the simple bootloader, CCMs are reserved for application.

Boot of ARC board

EM Starter Kit

The EM Starter Kit uses a Xilinx SPARTAN-6 FPGA part which can be configured to run different members of the ARCv2 EM Processor family. The EMSK includes a SPI flash pre-programmed with four FPGA configurations of ARC EM cores.

When a "power on" or reset/configure is issued, the FPGA auto-loads one of the pre-installed FPGA configurations from SPI flash. After the FPGA configuration is loaded from the SPI flash, a simple primary bootloader is loaded in ICCM. Through the primary bootloader, an application can be loaded from SPI Flash into ICCM or external DDR memory.

Considering that the SPI Flash is used to store FPGA images, the secondary bootloader is designed based on the primary bootloader to load an application from an SD card since it can be read and written easily. The startup sequence is listed below:

- 1. Power on or reset event.
- 2. Load FPGA configuration from the SPI flash.
- 3. Run primary bootloader, which loads the secondary bootloader from the SPI Flash into main memory (DDR).
- 4. Run secondary bootloader from main memory to load application from the SD card into ICCM/DDR memory.
- 5. Run the application from ICCM/DDR memory.

IoT Development Kit

IoT Development Kit can boot from on-chip eflash and extern boot SPI flash, which is decided by the FWU switch of IOTDK. When this switch is set to "off", the processor starts executing the program stored in on-chip eflash; When this switch is set to "on", the processor starts executing the program stored in external boot SPI eflash. The

simple bootloader can be written to both flash to load an application from the TF card. The startup sequence for IoT Development Kit is listed below:

- 1. Power on or reset event
- 2. Boot from on-chip eflash or extern boot SPI flash decided by the FWU switch
- 3. Run simple bootloader to load application from the TF card into ICCM
- 4. Run the application from ICCM memory

How to flash the ARC board

Note: In this lab, we do not use MCUBoot, so we need to disable MCUBoot, we should set **USE_MCUBOOT** = 0 in makefile.

EM Starter Kit

· Generate a secondary bootloader binary file

```
$ cd <embarc_root>/example/baremetal/bootloader
$ make BOARD=emsk BD_VER=22 CUR_CORE=arcem7d TOOLCHAIN=gnu bin
```

- · Program the secondary bootloader binary file into SPI Flash
 - Insert SD card to your PC, and copy the binary file <code>obj_emsk_22/gnu_arcem7d/</code> <code>emsk_bootloader_gnu_arcem7d.bin</code> to SD card root folder, and rename it to <code>em7d_2bt.bin</code>
 - Insert the SD card to EMSK Board, choose the right core configuration, build and run the <embARC>/example/baremetal/bootloader example, then press any button to stop auto boot process, and enter to ntshell command mode
 - Use ntshell command *spirw* to program the em7d_2bt.bin into spiflash
 - * Run spirw to show help
 - * Run *spirw -i* to check SPI Flash ID, it should be **Device ID = ef4018**
 - * Run spirw -w em7d_2bt.bin 0x17f00000 0x17f00004 to program spiflash
 - * Check the output message to see if it has been programmed successfully

- If programmed successfully, when the board is reset, make sure Bit 4 of the on-board DIP switch is ON to enable secondary bootloader run
- If the SD card already contains the *boot.bin* in it, the bootloader automatically loads it from SD card. If not, it enters to ntshell mode
- You can go o the next step to generate the boot.bin for proper application you want to be auto-loaded in SD card

```
COM22:115200baud - Tera Term VT
File Edit Setup Control Window Help
Firmware Feb 22 2017, v2.3
Bootloader Feb 22 2017, v1.1
ARC EM7D, core configuration #1
ARC IDENTITY = 0x43
RF BUILD = 0x2
TIMER BUILD = 0 \times 1010 b 05
ICCM BUILD = 0xa05
DCCM BUILD = 0 \times 10905
I_CACHE_BUILD = 0x225105
D CACHE BUILD = 0x215105
SelfTest PASSED
Boot image has been found
        start = 0xd8001c
        size = 0x4030c
        ram addresss = 0x17f00000
        start address = 0x17f00004
                                      Bit 4 of DIP switch is off, then
 Reload cfg button pressed(C)
         Synopsys, Inc.
**
                                36.3
                                       bootloader is not loaded and
       ARC EM Starter kit
**
                                 10110
**
                                 20
                                       start to run
** Comprehensive software stacks **
**
     available from embARC.org **
**
                                 16 (6)
Firmware Feb 22 2017, v2.3
Bootloader Feb 22 2017, v1.1
ARC EM7D, core configuration #1
ARC IDENTITY = 0x43
RF_BUILD = 0x2
TIMER BUILD = 0 \times 1010 \text{b} 05
ICCM_BUILD = 0xa05
DCCM_BUILD = 0 \times 10905
I_CACHE_BUILD = 0x225105
D_CACHE_BUILD = 0x215105
SelfTest PASSED
Boot image has been found
       start = 0xd8001c
       size = 0x4030c
       ram addresss = 0x17f00000
       start address = 0x17f00004
Loading 262924 bytes from SPI: 0xd8001c to RAM: 0x17f00000 - completed
       it 4 of DIP switch is on, then bootload is loaded
embARC Build Time: Mar 16 2017, 17:34 Secondary bootloader on spiflash
Compiler Version: ARC GNU, 6.2.1 20160824
FatFS initialized successfully!
boot.json open error. use default bootloader
 Press any button on board to stop auto boot in 5 s
```

• Generate boot.bin using any embARC example, it's RAM start address should be 0x10000000. Use bootloader to run it

Known Issues

- Boot rom of EMSK1.x is not able to load secondary bootloader on SPI Flash, you need a modified EMSK1.x mcs file to enable this function, send request in forum about this mcs file.

IoT Development Kit

- Generate a secondary bootloader binary file
- · Program the secondary bootloader binary file into SPI Flash
 - Insert SD card to your PC, and copy the binary file obj_iotdk_10/mw_arcem9d/ simple_bootloader_mw_arcem9d.bin to SD card Root, and rename it to simple_bootloader.bin
 - copy the file example/bootloader/boot.json to SD card root, and change the boot_file value to boot.bin, and change the ram_startaddress to 536870912(0x20000000)

- Insert the SD card to iotdk Board, rmove APPL_DEFINES += -DUSE_APPL_MEM_CONFIG in makefile, build and run the <embARC>/example/baremetal/bootloader example, and enter to ntshell command mode.
- Use ntshell command *flash* to program the simple_bootloader.bin into both flash
 - * Run *flash -h* to show help
 - * Run flash -eflsh simple_bootloader.bin to program eflash
 - * Run flash -bootspi simple_bootloader.bin to program bootspi flash
 - * Check the output message to see if it was programmed successfully

```
COM11 - Tera Term VT
File
    Edit Setup Control Window Help
COM1>flash -h
Usage: flash [OPTION]...
write bin file to flash(eflash or bootspi flash)
 -h/H/?
            Show the help information
Examples:
 flash -eflash test.bin
                            Write bin file to eflash
 flash -bootspi test.bin
                             Write bin file to bootspi flash
             Show the help information
 flash -h
COM1>flash -eflash simple bootloader.bin
COM1>flash -bootspi simple bootloader.bin
COM1>
```

- If the SD card already contains the boot.bin and boot.json in it, the bootloader automatically loads it from SD card, if not, it enters to ntshell mode
- You can go o the next step to generate the boot.bin for proper application you want to be auto-loaded in SD card

• Generate boot.bin using any embARC example, its RAM start address should be 0x20000000. Use bootloader to run it

Exercises

- 1. Create and build a different self-boot embARC application
- 2. Use the ntshell commands

3. Use the UART-ymodem to load your application

3.2 Advanced labs

3.2.1 Memory map and linker

Purpose

- To get familiar with memory layout in compilation process
- To learn how to use linker

Requirements

The following hardware and tools are required:

- · PC host
- ARC GNU toolchain/MetaWare Development Toolkit
- nSIM simulator
- embarc_osp/arc_labs/labs/lab8_linker

Content

- Customizing your program with compiler pragmas.
- Using "pragma code" to specify a new name of section in which the code of function reside.
- Mapping this code section into specified memory location with linker.
- Checking the location of this code section after build process.

Principles

By default, compiler-generated code is placed in the *.text* section. The default code section name can be overridden by using the *code pragma*. After compilation process, the linker automatically maps all input sections from object files to output sections in executable files. If you want to customize the mapping, you can change the default linker mapping by invoking a linker command file.

Steps

Create a project and overriding code section name

Open MetaWare IDE, create an empty C project called lab_linker and select ARC EM series processor. Import the main.c and link.cmd files from the *embarc_osp/arc_labs/lab8_linker* directory into the project.

Open main.c file in MetaWare IDE, use "pragma code" to change the section in which function modify reside from *.text* to a new name "*modify_seg*".

```
#pragma Code ("modify_seg")
void modify(int list[], int size) {
    int out, in, temp;
    for(out=0; out<size; out++)
        for(in=out+1; in<size; in++)</pre>
```

```
if(list[out] > list[in]) {
    temp = list[in];
    list[in] = list[out];
    list[out] = temp;
}
#pragma Code ()
```

Pragma code has two forms that must be used in pairs to bracket the affected function definitions:

```
#pragma code(Section_name)
/* ----- Affected function definitions go here ---- */
#pragma code() /* No parameters here */
```

Section_name is a constant string expression that denotes the name of the section.

Note: About detailed usage of the compiler pragmas, see MetaWare C/C++ Programmer's Guide for the ccac Compiler.

Edit the linker command file

Open link.cmd file, there are two parts, one is for memory blocks location, the other is for sections mapping. Add one new block named "*MyBlock*" in MEMORY, the start address is 0x00002000, and the size is 32KB. Add one new GROUP in SECTIONS, and mapping section "*modify_seg*" into *MyBlock*.

```
MEMORY {
    // Note: overlap of code and data spaces is not recommended since it makes
    // Address validity checking impossible with the debugger and simulator
    MyBlock: ORIGIN = 0x00002000, LENGTH = 32K
    MEMORY_BLOCK1: ORIGIN = 0x0010000, LENGTH = 64K
    MEMORY_BLOCK2: ORIGIN = 0x0020000, LENGTH = 128K
}
SECTIONS {
    GROUP: {
        modify_seg: {}
    }>MyBlock
......
```

Note: About format and syntax of the linker command file, see MetaWare ELF Linker and Utilities User's Guide.

Add the linker command file into the project

Right-click the current project lab_linker and select Properties. Click C/C++ build > Settings > Tool Settings to open the linker option settings page.

Select Command files to add linker.cmd file into this project.

Check the result

In the linker option settings window, select Map listing to check Generate listing file(=.map)

Build the lab_linker project, then open the lab_linker.map file.

SECTION SUMMARY

OUTPUT/	TYPE	START	END	
INPUT S	ECTION	ADDRESS	ADDRESS	LENGTH

modity s	οσ			
mourry_s	с <u>в</u>			
	text	00002000	00002039	0000003a
.fini	text	00010000	00010005	00000006
.init	text	00010008	0001000d	0000006
.text	text	00010010	0001013d	0000012e
.vectors	text	00010140	0001017f	00000040
.sdata	bss	00020000	0001ffff	00000000
.data	data	00020000	0002001f	00000020
.stack	bss	00020020	0003001f	00010000

Search SECTIONS SUMMARY, then you can check the size and location of *modify_seg* section, it resides in *MyBlock*, similar to you setting in the linker command file.

Exercises

Check the memory mapping info of *modify_seg* section by using elfdump tool.

3.2.2 A WiFi temperature monitor

Purpose

- To learn how to build a wireless sensor terminal based on the embARC OSP package
- To know how to use ESP8266 module and AT commands
- To learn more about the usage of FreeRTOS operating system

Requirements

The following hardware and tools are required:

- PC host
- GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (IoT Development Kit)
- embARC OSP package
- embarc_osp/arc_labs/labs/lab_esp8266_wifi

Content

Through this lab, you get a preliminary understanding of ESP8266 WiFi module and the AT command.

The lab is based on the embARC OSP package and the supports of the popular WiFi module, ESP8266. During the lab, you first use the AT command to set the ESP8266 to the server mode. Then you can use your laptop or mobile phone to access ESP8266 by IP address. You get a static webpage transmitted via TCP protocol.

Principles

ESP8266

The ESP8266 is an ultra-low-power WiFi chip with industry-leading package size and ultra-low power technology. It is designed for mobile devices and IoT applications, facilitating the connection between user devices to IoT environments.

The ESP8266 is available with various encapsulations. On-board PCB antenna, IPEX interface, and stamp hole interface are supported.

ESP8266 can be widely used in smart grid, intelligent transportation, smart furniture, handhold devices, industrial control, and other IoT fields.

Ai-Thinker company has developed several WiFi modules based on ESP8266, including ESP01 and ESP01S which are used in this lab.

Note: See embARC doc to learn how to connect it with your board.

Program structure is shown below

Code is shown below

```
#include "embARC.h"
#include "embARC_debug.h"
#include "board.h"
#include "esp8266.h"
#include <stdio.h>
#include <string.h>
#define WIFI_SSID "\"embARC\""
#define WIFI_PWD
                  "\"qazwsxedc\""
static char http_get[] = "GET /";
static char http_IDP[] = "+IPD,";
static char http_html_header[] = "HTTP/1.x 200 OK\r\nContent-type: text/
→html\r\n\r\n";
static char http_html_body_1[] =
   "<html><head><title>ESP8266_AT_HttpServer</title></head><body><h1>Welcome to_
→this Website</h1>";
static char http_html_body_2[] =
   "<\!\!p\!>\! This Website is used to test the AT command about HttpServer of ESP8266.</
→p></body></html>";
```

```
(continued from previous page)
```

```
static char http_server_buf[1024];
int main(void)
{
   char *conn_buf;
   //ESP8266 Init
   →");
   ESP8266_DEFINE (esp8266);
   esp8266_init(esp8266, UART_BAUDRATE_115200);
   at_test(esp8266->p_at);
   board_delay_ms(100, 1);
   //Set Mode
  \rightarrow ======\langle n'' \rangle;
   esp8266_wifi_mode_get(esp8266, false);
   board_delay_ms(100, 1);
   esp8266_wifi_mode_set(esp8266, 3, false);
   board_delay_ms(100, 1);
   //Connect WiFi
   do {
         esp8266_wifi_scan(esp8266, http_server_buf);
         EMBARC_PRINTF("Searching for WIFI %s .....\n", WIFI_SSID);
         board_delay_ms(100, 1);
   } while (strstr(http_server_buf, WIFI_SSID) == NULL);
   EMBARC_PRINTF("WIFI %s found! Try to connect\n", WIFI_SSID);
   while (esp8266_wifi_connect(esp8266, WIFI_SSID, WIFI_PWD, false) != AT_OK) {
         EMBARC_PRINTF("WIFI %s connect failed\n", WIFI_SSID);
         board_delay_ms(100, 1);
   }
   EMBARC_PRINTF("WIFI %s connect succeed\n", WIFI_SSID);
   //Creat Server
  EMBARC_PRINTF("============================== Connect Server_
 \rightarrow ========\langle n'' \rangle;
   esp8266_tcp_server_open(esp8266, 80);
   //Show IP
  esp8266_address_get(esp8266);
   board_delay_ms(1000, 1);
   while (1) {
         memset(http_server_buf, 0, sizeof(http_server_buf));
         at_read(esp8266->p_at ,http_server_buf ,1000);
         board_delay_ms(200, 1);
```

```
//EMBARC_PRINTF("Alive\n");
           if (strstr(http_server_buf, http_get) != NULL) {
                  EMBARC_PRINTF("======send_
          ======\n");
                   EMBARC_PRINTF("\nThe message is:\n%s\n", http_server_buf);
                   conn_buf = strstr(http_server_buf, http_IDP) + 5;
                   \star (conn_buf+1) = 0;
                   EMBARC_PRINTF("Send Start\n");
                   board_delay_ms(10, 1);
                   esp8266_connect_write(esp8266, http_html_header, conn_buf,_
\leftrightarrow (sizeof (http_html_header) -1));
                   board_delay_ms(100, 1);
                   esp8266_connect_write(esp8266, http_html_body_1, conn_buf,_
\leftrightarrow (sizeof(http_html_body_1)-1));
                   board_delay_ms(300, 1);
                   esp8266_connect_write(esp8266, http_html_body_2, conn_buf,_
board_delay_ms(300, 1);
                   esp8266_CIPCLOSE(esp8266, conn_buf);
                   EMBARC_PRINTF("Send Finish\n");
           }
   }
   return E_OK;
}
```

Steps

Hardware connection (as shown below)

Modify the code

Change the WiFi account and password set in the code to connect the particular wifi(as shown below).

#define WIFI_SSID "\"embARC\""
#define WIFI_PWD "\"gazwsxedc\""

Compile and download

Compile and download the program, after downloading successfully, the relevant download information is displayed in the command window(as shown in the following example).

```
[DIGILENT] This device supports JTAG7 scan formats.
[DIGILENT] Device enumeration: #0 is `IoTDK'=DesignWare ARC SDP.
[DIGILENT] We choose device : #0 `IoTDK' from 1 possible devices.
[DIGILENT] Product=507 variant=1 fwid=56 firmware-version=10a.
[DIGILENT] It is possible to set the JTAG speed.
[DIGILENT] Current speed is 10000000 Hz.
[DIGILENT] Attempting to set speed to 8000000 Hz.
[DIGILENT] Speed was set to 7500000 Hz.
[DIGILENT] Speed was set to 7500000 Hz.
[DIGILENT] Suppress these messages with environment variable DIG_VERBOSE=0.
Initializing. System name is ARC_DLL; my DLL was C:/ARC/MetaWare/arc/bin/freertos.
freeRTOS: there are 10 task priorities.
```

At this point, feedback information is shown on your serial port console, representing the process of the board establishing connection with http server with AT command (showing below).

```
[at_send_cmd]131: at_out: "AT+CWMODE_CUR?
" (16)
[at_get_reply]154: "
AT+CWMODE_CUR?
+CWMODE_CUR:1
OK" (38)
CWMODE_CUR = 1
[at_send_cmd]131: at_out: "AT+CWMODE_CUR=3
" (17)
[at_get_reply]154: "
AT+CWMODE_CUR=3
OK" (24)
[at_send_cmd]131: at_out: "AT+CWLAP
" (10)
[at_get_reply]154: "
AT+CWLAP
+CWLAP: (0, "synopsys-guest", -71, "6c:f3:7f:a8:a1:21", 1, -27, 0)
+CWLAP: (5, "Synopsys", -70, "6c:f3:7f:a8:a1:22", 1, -27, 0)
+CWLAP: (0, "synopsys-guest", -94, "d8:c7:c8:43:5b:81", 1, -19, 0)
+CWLAP: (5, "Synopsys", -95, "d8:c7:c8:43:5b:83", 1, -21, 0)
+CWLAP:(0,"iFuture",-94,"d4:68:ba:06:65:4a",1,-16,0)
+CWLAP:(4,"iFuture_City",-93,"d4:68:ba:0e:65:09",3,-4,0)
+CWLAP: (3, "embARC", -62, "5e:e0:c5:4f:df:80", 6, 32767, 0)
OK" (416)
Searching for WIFI "embARC" .....
WIFI "embARC" found! Try to connect
[at_send_cmd]131: at_out: "AT+CWMODE_CUR=1
" (17)
[at_get_reply]154: "
AT+CWMODE_CUR=1
OK" (24)
[at_send_cmd]131: at_out: "AT+CWJAP_CUR="embARC", "qazwsxedc"
" (35)
[at_get_reply]154: "
AT+CWJAP_CUR="embARC", "qazwsxedc"
WIFI DISCONNECT
WIFI CONNECTED
WIFI GOT IP
OK" (88)
WIFI "embARC" connect succeed
[at_send_cmd]131: at_out: "AT+CIPMUX=1
" (13)
[at_get_reply]154: "
AT+CIPMUX=1
OK" (20)
[at_send_cmd]131: at_out: "AT+CIPSERVER=1,80
" (19)
[at_get_reply]154: "
AT+CIPSERVER=1,80
no change
OK" (37)
```

```
[at_send_cmd]131: at_out: "AT+CIFSR
" (10)
[at_get_reply]154: "
AT+CIFSR
+CIFSR:STAIP,"192.168.137.236"
+CIFSR:STAMAC,"5c:cf:7f:0b:5f:9a"
OK" (84)
```

Access server

The serial port feedback information above shows that the board has successfully connected to the target WiFi through ESP8266. It is set to the server mode by using the AT command, and the IP address of the server is also given.

At this point, use a PC or mobile phone to connect to the same WiFi, open a browser(recommend Google Chrome for PC), and enter the IP address to see the static HTTP page. Notice the IP address that you enter should be the same IP address shown in *Show IP* section at your serial port console. The content of your serial port console and browser is shown below:

```
----- send -----
The message is:
0, CONNECT
1, CONNECT
+IPD,0,384:GET / HTTP/1.1
Host: 192.168.137.236
Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
→like Gecko) Chrome/70.0.3538.102 Safari/537.36
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/
→apng, */*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN, zh; q=0.9
Send Start
[at_send_cmd]131: at_out: "AT+CIPSEND=0,44
" (17)
[at_get_reply]154: "AT+CIPSEND=0,44
OK" (22)
[at_get_reply]154: "
Recv 44 bytes
SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=0,93
" (17)
[at_get_reply]154: "
AT+CIPSEND=0,93
OK" (24)
[at_get_reply]154: "
>
Recv 93 bytes
SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=0,93
```

```
" (17)
[at_get_reply]154: "
AT+CIPSEND=0,93
OK" (24)
[at_get_reply]154: "
>
Recv 93 bytes
SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPCLOSE=0
" (15)
[at_get_reply]154: "
AT+CIPCLOSE=0
0,CLOSED
OK" (32)
Send Finish
The message is:
+IPD,1,353:GET /favicon.ico HTTP/1.1
Host: 192.168.137.236
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
→like Gecko) Chrome/70.0.3538.102 Safari/537.36
Accept: image/webp, image/apng, image/*, */*;q=0.8
Referer: http://192.168.137.236/
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN, zh; q=0.9
Send Start
[at_send_cmd]131: at_out: "AT+CIPSEND=1,44
" (17)
[at_get_reply]154: "AT+CIPSEND=1,44
OK" (22)
[at_get_reply]154: "
>
Recv 44 bytes
SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=1,93
" (17)
[at_get_reply]154: "
AT+CIPSEND=1,93
OK" (24)
[at_get_reply]154: "
Recv 93 bytes
SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPSEND=1,93
" (17)
[at_get_reply]154: "
AT+CIPSEND=1,93
OK" (24)
```

```
[at_get_reply]154: "
>
Recv 93 bytes
SEND OK" (30)
[at_send_cmd]131: at_out: "AT+CIPCLOSE=1
" (15)
[at_get_reply]154: "
AT+CIPCLOSE=1
1,CLOSED
OK" (32)
Send Finish
```

ESP8266_AT_HttpServer × +
 ← → C ③ 不安全 | 192.168.137.236

Welcome to this Website

This Website is used to test the AT command about HttpServer of ESP8266.

Exercises

Referring to the embARC documents, using ESP8266 and TCN75 temperature sensor to build http server to make the page display the sensor temperature in real time.

3.2.3 BLE Communication

Purpose

- To get familiar with the wireless communication in IoT
- To get familiar with the usage of RN4020 BLE module on IoT Development Kit
- To learn the usage of APIs of RN4020 driver in embARC OSP

Requirements

The following hardware and tools are required:

- PC host
- A smartphone which supports BLE
- ARC GNU toolchain/MetaWare Development Toolkit
- ARC board (IoT Development Kit)
- embARC OSP package

• embarc_osp/arc_labs/labs/lab6_ble_rn4020

Content

The communication between smartphone and IoT Development Kit board with RN4020 BLE module.

- Setup RN4020 BLE module by using API of RN4020 driver.
- Connect smartphone and RN4020 by BLE, and check the data send by IoT Development Kit in smartphone.
- Send data from smartphone to IoT Development Kit board, and print this data value in terminal.

Principles

RN4020 BLE module is controlled by the user through input/output lines (that is physical device pins) and an UART interface. The UART Interface supports ASCII commands to control/configure the RN4020 modules for any specific requirement based on the application.

Setup

Before connecting an RN4020 module to a smartphone device, you might need to set up the RN4020 module as follows.

- 1. Configure UART which is connected to RN4020 with these parameters: **Baud rate 115200, Data bits 8, Parity - None, Stop bits - 1**
- 2. Set the WAKE_SW pin high to enter command mode
- 3. Run the command SF, 1 to reset to the factory default configuration
- 4. Run the command SN, IoT DK to set the device name to be "IoT DK"
- 5. Run the command **SS**, **C0000001** to enable support of the Device Information, Battery Service, and User-Defined Private Service
- 6. Run the command SR, 00002000 to set the RN4020 module as a server
- 7. Run the command PZ to clear all settings of the private service and the private characteristics
- 8. Run the command **PS**, **11223344556677889900AABBCCDDEEFF** to set the UUID of user-defined private service to be 0x11223344556677889900AABBCCDDEEFF
- 9. Run the command **PC**, **010203040506070809000A0B0C0D0E0F**, **18**, **06** to add private characteristic 0x010203040506070809000A0B0C0D0E0F to current private service. The property of this characteristic is 0x18 (writable and could notify) and has a maximum data size of 6 bytes.
- 10. Run the command **R**, **1** to reboot the RN4020 module and to make the new settings effective
- 11. Run the command LS to display the services

The source code using the API of RN4020 driver in embARC OSP as follows.

Advertise

Run the command **A** to start advertisement. The source code using the API of RN4020 driver in embARC OSP as follows:

```
rn4020_advertise(rn4020_ble);
```

Send data

Run the command **SUW**, **2A19**, **value** to set the level of Battery. The source code using the API of RN4020 driver in embARC OSP as follows:

```
while (1) {
    rn4020_battery_set_level(rn4020_ble, battery--);
    board_delay_ms(1000, 0);
    if (battery < 30) {
        battery = 100;
    }
}</pre>
```

Note: About detailed usage of RN4020 BLE module, see RN4020 Bluetooth Low Energy Module User's Guide.

Steps

Run project

Open the serial terminal emulator in computer (for example, Tera Term), set as **115200 baud**, **8 bits data**, **1 stop bit and no parity**, and connect to the IoT Development Kit board.

Open cmd from the folder embarc_osp/arc_labs/labs/lab6_ble_rn4020, input the command as follows:

```
make BOARD=iotdk TOOLCHAIN=gnu run
```


Then the output is displayed in the serial terminal.

Connection

Open the BLE browser APP in smartphone (for example, LightBlue in IOS), and scan for BLE peripherals, connect the "IoT DK" device. Then the output is displayed in the serial terminal.

And the device information in displayed BLE browser APP.

く Back	Peripheral	Clone
IoT DK		
UUID: 4CF70	6AF-2D72-EC22-3E7C-E10	0A7B2C831
Connected		
ADVERTI	SEMENT DATA	Show
Device In	formation	
Serial Nur	mber String	>
Hardware	Revision String	>
Firmware	Revision String	>
Software 1.33BEC	Revision String	>
Manufacti Microchip	urer Name String	>
Model Nu RN4020	Imber String	>
Info		Log

Communication

Read the data of Battery services in BLE browser APP. Check whether the data decreases gradually.

Write data in BLE browser APP. Check the received data in PC serial terminal.

< IoT DK 0x01020304-050	6-0708 Hex	
ют DK ОХО1020304-050 UUID: 01020304-0506-0708-0900- Connected)6-0708 0A0B0C0D0E0F	
NOTIFIED VALUES		
List	en for notifications	
i Cloud Connect	\bigcirc	
No value		
No value		
WRITTEN VALUES		
UXDB9084 14:49:09.559	(i)	
0xEB20 14:49:02:421	i	
nfo 👊	Log	
L_) / / / / / / /	⊢!	/ / /
/,,,, /,,,, /	/ / _ \	
mbARC Build Time: Sep 20 3 ompiler Version: Metaware n4020 test application oppected rite: 0x001B:EB20. write:	2018, 09:55:07 , 4.2.1 Compatibl 0x001B:DB9584.	e Clang 4.0.1 (branche

Exercises

Try to use the received data in IoT Development Kit board, and do some control by using GPIO. (for example, LED on/off)

3.2.4 How to use FreeRTOS

_40)

Purpose

- To learn how to implement tasks in FreeRTOS operating system
- To learn how to register tasks in FreeRTOS
- To get familiar with inter-task communication of FreeRTOS

Requirements

The following hardware and tools are required:

- PC host
- GNU Toolchain for ARC Processors / MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embARC OSP package
- embarc_osp/arc_labs/labs/lab9_freertos

Content

This lab utilizes FreeRTOS v9.0.0, and creates 3 tasks based on embARC OSP. You should apply inter-task communicating methods such as semaphore and message queue in order to get running LEDs result. You should know the basic functions of FreeRTOS.

Principles

Background

Operating system is software that controls basic hardware and software resources and provides access to them as a service for applications. In this sense applications that are used are said to be run on top of or inside the operating system.

There are different kind of operating systems and many definitions of operating systems depending on the available features. One of the main features of every operating system is how it organizes several tasks (programs) to work together. Some operating systems execute only one task at the time (these are called single-tasking) other allow multiple programs to work together (multi-tasking). Most common desktop operating systems are multi-tasking (Linux, Windows, and so on).

As processors on which programs are executed are sequential devices, technically only single program can be run at a time on a processor. However, multi-tasking does periodical switching between several tasks creating an illusion that these tasks work in parallel. The part of operating system that does this work is called scheduler. Scheduler is a routine that decides the order of execution of several tasks running on operating system.

Depending on scheduler multi-tasking algorithm operating systems are classified on real-time and non-real-time. In desktop operating systems (Linux, Windows) the usual approach of scheduler is to try to distribute processor time evenly between running application, so that each uses fair amount of resources. However, this approach has significant drawback which is unpredictable times when specific task are running. On the other hand, some applications (especially embedded) are time constrained and thus require deterministic execution of tasks. For example, if embedded system is controlling industrial machinery and software application is controlling some operation in the machine, which should be done at specific times disregarding of what other operations are pending. For this purpose, schedulers in some operating systems are made in a way to start tasks and predefine times. Such operating systems are called real-time operating systems (RTOS), because each task (application) running in RTOS can specify specific time (in milliseconds or other real time unit) at which it should be started. To organize this for several tasks, scheduler uses priorities set for tasks, so that if two applications requested to be called at the same time, the one with higher priority gets the resources.
As resources becoming abundant for modern micro processors, the cost to run RTOS becomes increasingly insignificant. RTOS also provides event-driven mode for better utilization of CPU with efficiency.

FreeRTOS is an implementation of RTOS specially designed to be compact, easy to use and freely available (under GPL license with several exceptions). FreeRTOS source code is available for download at http://freertos.org and for different processor it could be ported (architecture specific code needs to be changed) so that it can operate on the specific processor. embARC OSP includes FreeRTOS port for DesignWare® ARC® processors that can be used to run applications using RTOS. FreeRTOS contains all the basic features of RTOS: tasks, scheduler, notifications, semaphores, mutexes, and so on.

Design

This lab implements a running LED light with 3 tasks on FreeRTOS. Despite using 3 tasks overkill for a running LED, but it is beneficial for the understanding of FreeRTOS itself and inter-task communication as well.

The following is the flow chart of the program:

Realization

The following is the example code of system, including various initialization and task time delay.

```
#include "embARC.h"
#include "embARC_debug.h"
#include <stdlib.h>
static void task1(void *par);
static void task2(void *par);
static void task3(void *par);
```

```
#define TSK_PRIOR_1
                                (configMAX_PRIORITIES-1)
#define TSK_PRIOR_2
                                (configMAX_PRIORITIES-2)
                                (configMAX_PRIORITIES-3)
#define TSK_PRIOR_3
// Semaphores
static SemaphoreHandle_t sem1_id;
// Oueues
static QueueHandle_t dtq1_id;
// Task IDs
static TaskHandle_t task1_handle = NULL;
static TaskHandle_t task2_handle = NULL;
static TaskHandle_t task3_handle = NULL;
int main(void)
{
        vTaskSuspendAll();
        // Create Tasks
        if (xTaskCreate(task1, "task1", 128, (void *)1, TSK_PRIOR_1, &task1_
\rightarrowhandle)
              != pdPASS) {
                /*!< FreeRTOS xTaskCreate() API function */
                EMBARC_PRINTF("Create task1 Failed\r\n");
                return -1;
        } else {
                EMBARC_PRINTF("Create task1 Successfully\r\n");
        }
        if (xTaskCreate(task2, "task2", 128, (void *)2, TSK_PRIOR_2, &task2_
⇔handle)
              != pdPASS) {
                /*!< FreeRTOS xTaskCreate() API function */
                EMBARC_PRINTF("Create task2 Failed\r\n");
                return -1;
        } else {
                EMBARC_PRINTF("Create task2 Successfully\r\n");
        }
        if (xTaskCreate(task3, "task3", 128, (void *)3, TSK_PRIOR_3, &task3_
→handle)
              != pdPASS) {
                /*!< FreeRTOS xTaskCreate() API function */
                EMBARC_PRINTF("Create task3 Failed\r\n");
                return -1;
        } else {
                EMBARC_PRINTF("Create task3 Successfully\r\n");
        }
        // Create Semaphores
        sem1_id = xSemaphoreCreateBinary();
        xSemaphoreGive(sem1_id);
        // Create Queues
        dtq1_id = xQueueCreate(8, sizeof(uint32_t));
        xTaskResumeAll();
        vTaskSuspend(NULL);
        return 0;
}
```

```
static void task1(void *par)
{
        uint32_t led_val = 0;
        static portTickType xLastWakeTime;
        const portTickType xFrequency = pdMS_TO_TICKS(10);
        // Use current time to init <code>xLastWakeTime</code>, mind the difference with \_
↔vTaskDelay()
        xLastWakeTime = xTaskGetTickCount();
        while (1) {
                 /* call Freertos system function for 10ms delay */
                vTaskDelayUntil( &xLastWakeTime,xFrequency );
                //####Insert code here###
        }
}
static void task2(void *par)
{
        uint32_t led_val = 0x0001;
        static portTickType xLastWakeTime;
        const portTickType xFrequency = pdMS_TO_TICKS(100);
        // Use current time to init xLastWakeTime, mind the difference with_
\leftrightarrow vTaskDelay()
        xLastWakeTime = xTaskGetTickCount();
        while (1) {
                 /* call Freertos system function for 100ms delay */
                vTaskDelayUntil( &xLastWakeTime, xFrequency );
                //####Insert code here###
        }
}
static void task3(void *par)
{
        uint32_t led_val = 0;
        static portTickType xLastWakeTime;
        const portTickType xFrequency = pdMS_TO_TICKS(200);
        // Use current time to init xLastWakeTime, mind the difference with_
\leftrightarrowvTaskDelay()
        xLastWakeTime = xTaskGetTickCount();
        while (1) {
                /* call Freertos system function for 100ms delay */
                vTaskDelayUntil( &xLastWakeTime,xFrequency );
                //####Insert code here###
        }
```

Steps

Build and run the uncompleted code

The code is at embarc_osp/arc_labs/lab9_freertos, uses an UART terminal console and run the code, the following message from program is displayed:

```
embARC Build Time: Mar 9 2018, 17:57:50
Compiler Version: Metaware, 4.2.1 Compatible Clang 4.0.1 (branches/release_40)
Create task1 Successfully
Create task2 Successfully
Create task3 Successfully
```

This message implies that three tasks are working correctly.

Implement task 3

It is required for task 3 to retrieve new value from the queue and assign the value to led_val. The LED controls are already implemented in previous labs, the new function to learn is xQueueReceive(). This is a FreeRTOS API to pop and read an item from queue. See FreeRTOS documentation and complete the code for this task. (An example is in 'complete' folder)

Implement task 1

It is required for task 1 to check if value from queue is legal. If not, a reset signal is needed to be sent.

Two new functions might be helpful for this task: xSemaphoreGive() for release a signal and xQueuePeek() for read item but not pop from a queue. See FreeRTOS documentation and complete the code for this task. (An example is in 'complete' folder)

Do notice the difference between xQueueReceive () and xQueuePeek ().

Implement task 2

There are two different works for task 2 to complete: to shift led_val and queue it, and to reset both led_val and queue when illegal led_val is detected.

Three functions can be helpful: xQueueSend(), xSemaphoreTake(), xQueueReset(). See FreeRTOS documentation and complete the code for this task. (An example is in 'complete' folder)

Build and run the completed code

Build the completed program and debug it to fulfill all requirements. (8-digit running LEDs are used in example code)

Exercises

The problem of philosophers having meal:

Five philosophers sitting at a round dining table. Suppose they are either thinking or eating, but they cannot do these two things at the same time. So each time when they are having food, they stop thinking and vice-versa. There are five forks on the table for eating noddle, each fork is placed between two adjacent philosophers. It is hard to eat noodles with one fork, so all philosophers need two forks in order to eat.

Write a program with proper console output to simulate this process.

3.2.5 ARC DSP: Compiler Optimizations

Purpose

- To understand Metaware compiler DSP extension options and optimization level
- To learn how to use Metaware compiler to optimize regular C code with DSP instructions

Requirements

The following hardware and tools are required:

- PC host
- MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/dsp_lab_compiler_opt

Content

An example code below contains a function "test" which contains a 20 step for loop and a multiply accumulate operation done manually.

```
#include <stdio.h>
short test(short *a, short *b) {
    int i;
    long acc = 0;
    for(i = 0; i < 10; i++)
        acc += ( ((long) (*a++)) * *b++) <<1 ;
    return (short) (acc);
}
short a[] = {1,2,3,4,5, 6,7,8,9,10};
short b[] = {11,12,13,14,15, 16,17,18,19,20};
int main(int argc, char *argv[]) {
    short c = test(a,b);
    printf("result=%d",c);
    return 0;
}</pre>
```

Use Metaware compiler to optimize the C code with and without DSP extension options, and analyze the assembly code.

Principles

This section describes compiler options in MetaWare used in this lab.

To optimize code with DSP extensions, two sets of compiler options are used throughout the lab: DSP Extensions options and optimization level.

DSP Extensions Options

Use embARC OSP build system to compile the code. The details can be found in embARC OSP document page. Here is the example command. You can pass extra compiler/liner options by ADT_COPT/ADT_LOPT.

```
gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw ADT_COPT="-Hfxapi -Xdsp2

→" OLEVEL=02
```

Options that are used in the lab are:

• -Xdsp[1/2]:

Enable DSP instructions

• -Xdsp_complex, -Xdsp_divsqrt:

Enable complex arithmetic DSP, divide, and sqrt instructions

• -Xdsp_ctrl[=up|convergent,noguard|guard, preshift|postshift]:

Fine-tune the compiler's assumptions about the rounding, guard-bit, and fractional product shift behavior

• -Hdsplib: Link in the DSP library

For programming ARC fixed-point DSP in C and C++

Contains functions to carry out DSP algorithms such as filtering and transforms

• -Hfxapi: Use the Fixed Point API support library

Used with -Xdsp. Provides low level intrinsic support for ARC EM DSP instructions

Programs written using this API execute natively on an ARC EM processor with DSP extensions and can also be emulated on x86 Windows hosts

• -Xxy: Specifies that XY memory is available

Used with -Xdsp2. Enables optimization for XY memory

• -Xagu_small, -Xagu_medium, -Xagu_large:

Enables AGU, and specifies its size

Note: Because ARC is configurable processor, different cores can contain different extensions on hardware level. Therefore, options set for compiler should match underlying hardware. On the other hand, if specific hardware feature is present in the core but compiler option is not set, it cannot be used effectively, if used at all. IOTDK Core default options are presented in tcf file.

Optimization level

MetaWare compiler has different optimization levels, which enables or disables various optimization techniques included in the compiler. You can pass the optimization option to gmake by "OLEVEL=O2".

The lowest level is the default -O0, which does little optimization to the compiled assembly code, which can be used for debugging, because in un-optimized assembly code all source code commands have 1:1 representation. On the other hand, -O3 highest level optimization highly modifies output assembly code to make it smaller and fast, but debugging such a code is harder, because it is not close match with source code. Also, high level of optimization requires longer compilation time, which for large project can be significant, if many compilation iterations are to be made.

Optimization for DSP extensions

A regular code without direct usage of DSP extensions can be optimized to use DSP extensions wherever applicable, which compiler can do automatically with DSP extension options corresponding to hardware are set and high-level of optimization is selected.

Steps

1. Compiling with option -O0, DSP extensions will be specified in TCF file

Below is the list of options used when launching gmake:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw OLEVEL=00

You can use the following command to generate disassembly code, and check assembly code for function "test".

```
elfdump -T -S <your_working_directory>/obj_iotdk_10/mw_arcem9d/
dsp_lab1_mw_arcem9d.elf
```

Notice assembly code in the disassembled output. See how many assembly instruction are used for each line. For example, for loop spends several instruction to calculate loop variable value and check whether to stop.

29 short	<pre>test(short *a</pre>	, short *b) {
test	sub_s	%sp,%sp,16
test+0x02	st_s	%r0,[%sp,12]
test+0x04	st_s	%r1,[%sp,8]
32	long acc =	0;
test+0x06	mov_s	%r0,0
test+0x08	st_s	%r0,[%sp]
test+0x0a	st_s	%r0,[%sp,4]
33	for(i = 0;	i < 10; i++)
test+0x0c	ld_s	%r0,[%sp,4]
33	for(i = 0;	i < 10; i++)
test+0x0e	cmp_s	%r0,9
test+0x10	bgt_s	<pre>0xdc = test+0x34 = basic.c!36</pre>
34	acc	+= (((long)(*a++)) * *b++) << 1;
test+0x12	ld_s	%r0,[%sp,12]
test+0x14	add_s	%r1,%r0,2
test+0x16	st_s	%r1,[%sp,12]
test+0x18	ldh_s.x	%r0,[%r0]
test+0x1a	ld_s	%r1,[%sp,8]
test+0x1c	add_s	%r2,%r1,2
test+0x1e	st_s	%r2,[%sp,8]
test+0x20	ldh_s.x	%r1,[%r1]
test+0x22	mpy_s	%r0,%r0,%r1
test+0x24	asl_s	%r0,%r0
test+0x26	ld_s	%r1,[%sp]
test+0x28	add_s	%r0,%r0,%r1
test+0x2a	st_s	%r0,[%sp]
test+0x2c	ld_s	%r0,[%sp,4]
test+0x2e	add_s	%r0,%r0,1
test+0x30	st_s	%r0,[%sp,4]
test+0x32	b s	0xb4 = test+0x0c = basic.c!33

2. Compiling with DSP extensions, with -O2

Compile with:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw OLEVEL=02

Adding optimization level -O2, optimizes out many of the instructions:

```
29 short test(short *a, short *b) {
                            %r2,0
 test
               mov_s
 test+0x02
                            %lp_count,10
               mov
 test+0x06
                            0xbe = test+0x16 = basic.c!36
               lp
     34
                        acc += ( ((long)(*a++)) * *b++) << 1;
               ldh.x.ab
 test+0x0a
                            %r3,[%r1,2]
 test+0x0e
               ldh.x.ab
                            %r12,[%r0,2]
                            %r3,%r3,%r12
 test+0x12
               mpyw s
 test+0x14
               add1 s
                            %r2,%r2,%r3
                return (short) ((acc+0x8000)>>16);
     36
 test+0x16
                            %r0,%r2,0x8000
               add
                            [%blink]
 test+0x1e
               j_s.d
 test+0x20
               asr_s
                            %r0,%r0,16
  .0+0x2c
               nop_s
    47
                return 0;
🕈 main
                             [%blink]
               j s.d
                                             ; mwcall main+0x6e
```

In this code it is easy to find zero-delay loop ("lp" command) which acts as for loop. Note that multiply-accumulate is done with separate "mpyw_s" and "add1_s" instructions.

3. Compiling with DSP extensions, with -O3

Compile with:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw OLEVEL=03

Adding -Xdsp1 (optimization level changed to -O3) helps compiler to optimize away "mpyw_s" and "add1_s" instructions and replace them with hardware dual-16bit SIMD multilication "vmpy2h". Notice the loop count is now 5.

```
3: short test(short *a, short *b) {
 13c: 244a7140
                                         %lp_count,5
                                mov
 140: 244a1000
                                         %r12,0
                                mov
4:
        int i;
5:
6:
        long acc = 0;
        for(i = 0; i < 10; i++)
7:
 144: 20a80300
                                         0x15c = test+0x20
                                lp
                acc += ( ((long)(*a++)) * *b++) << 1 ;
8:
 148: 11040402
                                ld.ab
                                         %r2,[%r1,4]
 14c: 10040403
                                ld.ab
                                         %r3,[%r0,4]
 150: 2b1c0084
                                vmpy2h
                                         %r4,%r3,%r2
 154: 24141102
                                         %r2,%r12,%r4
                                add1
 158: 2214014c
                                add1
                                         %r12,%r2,%r5
9:
        return (short) (acc);
10:
 15c: 7fe0
                                         [%blink]
                                j s.d
 15e: 788e
                                sexh_s
                                         %r0,%r12
main:
13: short a[] = {1,2,3,4,5, 6,7,8,9,10};
14: short b[] = {11,12,13,14,15, 16,17,18,19,20};
15:
16: int main(int argc, char *argv[]) {
```

Exercises

Remove "<<1" from test function and see changes in the output instructions.

3.2.6 ARC DSP: Using FXAPI

Purpose

- To understand what is ARC Fixed-point API (FXAPI)
- To learn how to use FXAPI to optimize DSP programs

Requirements

The following hardware and tools are required:

- PC host
- MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/dsp_lab_fxapi

Content

This lab uses complex number multiplication as an example where using just compiler optimization options cannot gain the same effect as calling DSP instructions manually through FXAPI.

Principle

In this lab two implementations of complex multiplication are shown with and without FXAPI.

Complex number multiplication

Multiplication of two complex numbers a $(R_a + I_a i)$ and b $(R_b + I_b i)$

Is done using formula:

$$ab = (R_a + I_a i)(R_b + I_b i) = (R_a R_b - I_a I_b) + (R_a I_b + R_b I_a)i$$

In this lab example multiplication and accumulation of two arrays of complex numbers are used as a way to compare performance of ARC DSP extensions when used effectively.

The sum of element wise products of two arrays of complex numbers is calculated according to the following formula:

$$result = \sum_{i=0}^{N} a_i + b_i$$

where a and b are arrays of N complex numbers.

Implementation without DSP

In order to calculate element wise products of two arrays of complex numbers, a struct can be defined that stores real and imaginary parts of the complex number. Therefore, the calculation process receives an array of structures and works on it. The code is shown below:

The example keeps real and imaginary values in variables of type "short", while multiplication results are kept in "int" integer to avoid truncation. Final result is casted to short to return complex number as a result.

Implementation with FXAPI

FXAPI makes it possible to directly access complex number instructions (like MAC) available in ARC DSP Extensions. This is done through complex number type cq15_t, and various fx_* functions. Here $fx_v2a40_cmac_cq15$ FXAPI function is called which performs MAC of two cq15_t complex numbers.

```
cq15_t fx_complex_array_mult(cq15_t *a, cq15_t *b, int size) {
    v2accum40_t acc = { 0, 0 };
    for (int i=0; i < size; i++) {
        acc = fx_v2a40_cmac_cq15(acc, *a++, *b++);
    }
    return fx_cq15_cast_v2a40( acc );
}</pre>
```

As with previous implementation $q15_t$ is of similar size as short type, therefore, multiplication result needs larger storage. Here 40b vector accumulator is used directly to store intermediate results of MAC, and is casted to $cq15_t$ on return.

Using IoT Development Kit board for performance comparison

To compare performance of these two functions a simple application is created that performs complex array multiplication using either of the implementations above. The program initializes two arrays of complex numbers with random values and calls functions above in a loop (1 000 000-10 000 000 times) to make calculation delay measurable in seconds. This is done eight times, and after each loop a LED on board turns-on. In the result, LED strip on board works as a "progress bar" showing the process of looped multiplications.

The main performance check loop is shown in the following example. The outer loop runs 8 times (number of LEDs on LED strip), the inner loop makes "LOOPS/8" calls to complex multiplication function. LOOPS variable is configurable to change the total delay.

Steps

To test the following example, some modification of the code is required to have two loops with and without DSP.

Firstly you must build DSP libraries for this particular configuration of IOTDK:

buildlib my_dsp -tcf=<IOTDK tcf file> -bd ../ -f

IoT Development Kit tcf file can be found in embarc_osp/board/iotdk/configs/10/tcf/arcem9d. tcf

Both examples are to be compiled with DSP extensions.

1. Run program without FXAPI

Build with the command:

gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw gui
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"

With high optimization level functions using "short" type is compiled to use DSP MAC operation, enabling significant speedup.

```
158 complex_short short_complex_array_mult(complex_short *a, complex_short *b, int size) {
short_complex_array_mult mov_s
                                        %r11,%r0
              for (int i=0; i < size; i++)</pre>
  163
                           %r3,1,0xe4 = .1+0x3c = cmplx_mul.c!164+0xe
.1+0x02
             brlt.d
.1+0x06
             mov_s
                           %r8.0
.1+0x08
             mov
                           %lp_count,%r3
.1+0x0c
              mov_s
                           %r9,0
.1+0x0e
             lp
                           0xe0 = .1+0x38 = cmplx_mul.c!164+0xa
             ldh.x.ab
                           %r6,[%r2,4]
.1+0x12
                      %r12,[%r1,2]
acci += (int) ( a[i].imag * b[i].real );
             ldh_s.x
.1+0x16
  168
.1+0x18
                           %accl,%r9
             mov
.1+0x1c
             ldh.x.ab
                           %r0,[%r1,4]
.1+0x20
             mac
                           0,%r12,%r6
.1+0x24
             ldh.x
                           %r3,[%r2,-2]
  167
                      acci
                             += (int) ( a[i].real * b[i].imag );
.1+0x28
             mac
                          %r9,%r3,%r0
                          r -= (int) ( a[i].imag * b[i].imag );
%r12,%r12,%r3
  165
                      accr
.1+0x2c
             mpyw_s
                             += (int) ( a[i].real * b[i].real );
  164
                      accr
.1+0x2e
                           %r0,%r6,%r0
             mpyw
.1+0x32
                           %r0,%r0,%r8
             add_s
.1+0x34
             sub
                           %r8,%r0,%r12
.1+0x38
             nop_s
                           0xe6 = .1+0x3e = cmplx_mul.c!174
.1+0x3a
             b s
.1+0x3c
             mov_s
                           %r9,0
  174
              return result;
                           %r8,[%r11]
.1+0x3e
             sth
.1+0x42
             j_s.d
                           [%blink]
.1+0x44
                           %r9,[%r11,2]
             sth
```

2. Run program with FXAPI

Rename main.c.fxapi to main.c, then execute the command:

```
gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw gui
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"
```

However, using FXAPI enables compiler to directly use complex MAC instruction "cmachfr".

```
186 cq15_t fx_complex_aray_mult(cq15_t *a, cq15_t *b, int size) {
fx_complex_aray_mult mov_s %r10,0
189 for (int i=0; i < size; i++) {</pre>
 189
                                           ; 0x201 = uart_initDevice+0x01 = uart.c!32+0x1
.0+0x02
             setacc
                           0,%r10,0x201
                           0,%r10,0x101
                                            ; 0x101 = main+0x11 = cmplx_mul.c!59+0x11
.0+0x0a
             setacc
.0+0x12
             brlt.d
                           %r3,1,0x1be = .0+0x2a = cmplx_mul.c!193
.0+0x16
             mov
                           %lp_count,%r3
.0+0x1a
                           0x1be = .0+0x2a = cmplx_mul.c!193
             lp
 190
                 acc = fx_v2a40_cmac_cq15(acc, *a++, *b++);
.0+0x1e
             ld.ab
                           %r3,[%r2,4]
                           %r12,[%r1,4]
.0+0x22
             ld.ab
                           0,%r12,%r3
.0+0x26
             cmachfr
 193
              return fx_cq15_cast_v2a40( acc );
.0+0x2a
                          %r1,0xf00
                                           ; 0xf00 = __EH_FRAME_END+0x70
             getacc
.0+0x32
              j_s.d
                           [%blink]
.0+0x34
             st s
                           %r1,[%r0]
```

3.2.7 ARC DSP: Using DSP Library

Purpose

- To understand what is ARC DSP library
- To learn how to use DSP library to optimize DSP programs

Requirements

The following hardware and tools are required:

- PC host
- MetaWare Development Toolkit
- ARC board (EM Starter Kit / IoT Development Kit)
- embarc_osp/arc_labs/labs/dsp_lab_dsp_lib

Content

This lab uses matrix multiplication as an example where DSP library helps to efficiently use DSP extensions with shorter code. To use DSP Library and compare the execution speed of the programs with and without DSP library.

Principle

In this lab two implementations of matrix multiplication are shown: One manual implementation and the other using the DSP library.

Matrix multiplication

Multiplication of two matrices A and B of sizes [M*N] and [N*K] respectively is implemented using the following formula:

$$c_{ij} = \sum_{k=0}^{N-1} a_{ik} \, b_{kj}$$

Where i = 0...(M-1) and j = 0..(K-1) are row and column indexes of output matrix, with size [M*K].

Implementation without DSP

The following example shows the implementation of matrix multiplication of two matrices containing "short" values. By convention, matrices here are implemented as 1D arrays with row-first indexing, where element a_ik is indexed as a_{ik}

```
(continued from previous page)
```

```
/* randomize matrix with values up to 'max_value */
void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) ;
/* multiply two square matrices of same size*/
void mul_sq_mat(short x[][MATRIX_SIZE], short y[][MATRIX_SIZE], short z[][MATRIX_
⇔SIZE], int size) ;
/* print square matrix through UART*/
void print_sq_mat(short x[][MATRIX_SIZE], int SIZE);
int main(int argc, char *argv[]) {
    short a[MATRIX_SIZE][MATRIX_SIZE];
    short b[MATRIX_SIZE][MATRIX_SIZE];
    short c[MATRIX_SIZE][MATRIX_SIZE];
   int n =MATRIX_SIZE;
   rand_sq_mat(a,n, MAX_NUM);
   rand_sq_mat(b,n, MAX_NUM);
   print_sq_mat(a,n);
   print_sq_mat(b,n);
   unsigned int led_status = 0x40 ;
   led_status = 0 \times 7F;
   EMBARC_PRINTF("*** Start ***\n\r");
    for (int i =0; i< 8; i++) {
           for (int j = 1; j < LOOPS/8; j++ ) {</pre>
                   mul_sq_mat(a,b,c,n);
            };
           led_write(led_status, BOARD_LED_MASK);
           led_status = led_status >> 1;
    }
   print_sq_mat(c,n);
   EMBARC_PRINTF("*** Exit ***\n\r");
   return 0;
}
void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) {
   for (int i=0;i<SIZE;i++) {</pre>
           for(int j=0;j<SIZE;j++) {</pre>
                   x[i][j] = 1 + (rand() % max_value); //plus 1 to avoid zeros
           }
   }
}
void mul_sq_mat(short x[][MATRIX_SIZE], short y[][MATRIX_SIZE], short z[][MATRIX_
→SIZE], int size) {
   for (int i=0; i<size; i++) {</pre>
           for(int j=0; j<size; j++) {</pre>
                    z[i][j]=0;
                   for(int k=0;k<size;k++) {</pre>
```

Implementation with DSPLIB

DSP library contains matrix multiplication function, implementing matrix multiplication using DSP library requires initialization of matrix arrays (1D) and call to dsp_mat_mult_q15. The overall code is 4 lines, as highlighted in the following code. Note that dsplib.h must be included, and matrix a, b, and c must be declared as global variable. As the numbers are in q15 type, it is better to make elements of a and b between 32767 (~0.99) and 16384 (0.5), or 32768(-1) and 49152 (-0.5) that the result in c is not rounded to zero. Note as IOTDK is configured to have small AGU, the DSP library routine is not significantly faster.

```
#include "embARC.h"
#include "embARC_debug.h"
#include <stdlib.h>
#include "dsplib.h"
#define MATRIX_SIZE 20
#define MAX_NUM 1000
#define LOOPS 100000
/* Matrix manipulation functions */
/* randomize matrix with values up to 'max_value */
//void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) ;
/* multiply two square matrices of same size*/
void mul_sq_mat(short x[][MATRIX_SIZE], short y[][MATRIX_SIZE], short z[][MATRIX_
⇔SIZE], int size) ;
/* print square matrix through UART*/
void print_sq_mat(short * x, int SIZE);
                                  ***********
   __xy q15_t a[MATRIX_SIZE*MATRIX_SIZE];
   ____xy q15_t b[MATRIX_SIZE*MATRIX_SIZE];
   ____xy q15_t c[MATRIX_SIZE * MATRIX_SIZE];
int main(int argc, char *argv[]) {
```

```
(continued from previous page)
```

```
int n =MATRIX_SIZE;
matrix_q15_t matA, matB, matC;
    //rand_sq_mat(a,n, MAX_NUM);
    //rand_sq_mat(b,n, MAX_NUM);
    for (int i =0; i< MATRIX_SIZE * MATRIX_SIZE; i++) { a[i]=16384; }</pre>
    for (int i =0; i< MATRIX_SIZE*MATRIX_SIZE; i++) { b[i]=16383; }</pre>
    print_sq_mat(a,n);
    print_sq_mat(b,n);
dsp_mat_init_q15(&matA, MATRIX_SIZE, MATRIX_SIZE, a);
dsp_mat_init_q15(&matB, MATRIX_SIZE, MATRIX_SIZE, b);
dsp_mat_init_q15(&matC, MATRIX_SIZE, MATRIX_SIZE, c);
dsp_status status;
    unsigned int led_status = 0x40 ;
    led_status = 0 \times 7F;
    EMBARC_PRINTF("*** Start ***\n\r");
    for (int i =0; i< 8; i++) {
            for (int j = 1; j < LOOPS/8; j++ ) {</pre>
                     status = dsp_mat_mult_q15(&matA, &matB, &matC);
            };
            led_write(led_status, BOARD_LED_MASK);
            led_status = led_status >> 1;
    }
    if ( status == DSP_ERR_OK ) EMBARC_PRINTF("done\n");
    else EMBARC_PRINTF("something wrong");
    print_sq_mat(c,n);
    EMBARC_PRINTF("*** Exit ***\n\r");
    return 0;
}
//void rand_sq_mat(short x[][MATRIX_SIZE], int SIZE, int max_value) {
// for (int i=0;i<SIZE;i++) {</pre>
            for(int j=0; j<SIZE; j++) {</pre>
                     x[i][j] = 1 + (rand() % max_value); //plus 1 to avoid zeros
             }
// }
//}
//void mul_sq_mat(short x[][MATRIX_SIZE], short y[][MATRIX_SIZE], short z[][MATRIX_
\leftrightarrowSIZE], int size) {
// for (int i=0; i<size; i++) {</pre>
            for(int j=0; j<size; j++) {</pre>
                     z[i][j]=0;
                     for(int k=0;k<size;k++) {</pre>
                              z[i][j] += x[i][k] * y[k][j];
                     }
             }
    }
//}
```

```
void print_sq_mat(short* x, int SIZE) {
    EMBARC_PRINTF("-----\n\r");
    for(int j = 0; j < SIZE; j++) {
        for(int i = 0; i < SIZE; i ++) {
            EMBARC_PRINTF("%d\t", x[i+j*SIZE]);
        }
        EMBARC_PRINTF("\n\r");
    }
    EMBARC_PRINTF("-----\n\r");
}</pre>
```

Using IoT Development Kit board for performance comparison

Note: Create an IoT Development Kit application that uses LED strip as progress bar for large number of matrix multiplications with and without DSP library, adjust number of loops made to achieve measurable delay. Run the example and compare computational delay with and without DSPLIB.

Steps

Firstly you must build DSP libraries for this particular configuration of IOTDK:

```
buildlib my_dsp -tcf=<IOTDK tcf file> -bd ../ -f
```

IoT Development Kit tcf file can be found in embarc_osp/board/iotdk/configs/10/tcf/arcem9d. tcf

Both examples are to be compiled with DSP extensions.

1. Run program without DSP library

Build with the command:

```
gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"
```

2. Run program with DSP library

Rename main.c.dsplib to main.c, then execute the command:

```
gmake BOARD=iotdk BD_VER=10 CUR_CORE=arcem9d TOOLCHAIN=mw
ADT_COPT="-Hdsplib" ADT_LOPT="-Hdsplib -Hlib=../my_dsp"
```

Note that DSPLIB is statically linked with the project when -Hdsplib is set, and as the DSPLIB itself is precompiled with high level of optimization, changing optimization option for example program does not affect DSPLIB performance. On the other hand, even with highest optimization level a function utilizing simple instructions on "short" type (even converted to MACs if possible) is less efficient that direct use of DSPLIB.

3.3 Exploration

3.3.1 AWS IoT Smarthome

Purpose

- Show the smart home solution based on ARC and AWS IoT Cloud
- Learn how to use the AWS IoT Cloud
- · Learn how to use the EMSK Board peripheral modules and on-board resources

Equipment

Required Hardware

- [DesignWare ARC EM Starter Kit (EMSK)]
- [Digilent PMOD WiFi (MRF24WG0MA)]
- [Digilent PMOD TMP2]
- SD Card
- WiFi Hotspot (default SSID: embARC, Password: qazwsxedc, WPA/WPA2 encrypted)

Required Software

- MetaWare or ARC GNU Toolchain
- Serial port terminal (e.g. Putty, Tera-term or Minicom)

Hardware Connection (EMSK Board)

• Connect PMOD WiFi to J5, connect PMOD TMP2 to J2.

• Configure your hardware with proper core configuration.

Hardware Resources	Represent
BUTTON R	Livingroom Lights Control
LED 0-1	Livingroom Lights Status (On or Off)
BUTTON L	Kitchen Lights Control
LED 2-3	Kitchen Lights Status (On or Off)
BUTTON X	Front Door Lock Control
LED 4-5	Front Door Lock Status (On or Off)
LED 7	WiFi Connection Status (On for connected, Off for not)
LED X	Node Working Status (toggling in 2s period if working well)
PMOD TMP2	Temperature Sensor
PMOD WiFi	Provide WiFi Connection

• The hardware resources are described at the table below.

Content

This lab provides instructions on how to establish connection between the EMSK and Amazon Web Services Internet of Things (AWS IoT) cloud with a simulated smart home application. With the help of AWS IoT as a cloud platform, devices can securely interact with cloud applications and other devices. AWS IoT also supports MQ Telemetry Transport (MQTT) and provides authentication and end-to-end encryption.

This application is designed to show how to connect only 1 EMSK and AWS IoT Cloud using embARC. The connection between EMSK and AWS IoT Cloud is secured by TLS.

Principles

This lab demonstrates the smart home solution based on EMSK by establishing the connection between EMSK Board and AWS IoT Cloud. The AWS IoT Device C SDK for the embedded platform has been optimized and ported for embARC.

In this lab application, the peripheral modules and on-board resources of EMSK board are used to simulate the objects which are controlled and monitored in smart home scenario. The AWS IoT Cloud is used as the cloud host

and a controlling platform that communicates with the EMSK Board with MQTT protocol. A HTML5 Web APP is designed to provide a dash board in order to monitor and control smart home nodes.

Steps

Creating and setting smart home node

- 1. Create an AWS account at [Amazon AWS Website]. Amazon offers various account levels, including a free tier for AWS IoT.
- 2. Login AWS console and select AWS IoT.

3. Select an appropriate IoT server in the top right corner of the AWS IoT console page. As an example US East (N. Virginia) server is selected, you may select other server as you see fit.

4. Create your smart home node in the thing registry and generate X.509 certificate for the node. Create an AWS IoT policy. Then attach your smart home node and policy to the X.509 certificate.

Note: for more details, see [Using a Smart Home IoT Application with EMSK]

5. Download the root CA certificate from [here]. Rename it *rootCA.crt*. Copy the certificate files *cert.crt*, *privateKey.pem and rootCA.crt* to folder *cert/smarthome*. Insert the SD card to your PC, and copy the certificate folder cert to the SD Card root.

6. Open the [Web App] in a web browser and load the configuration file dashboard-smarthomesinglething.json obtained from [embARC/example/freertos/iot/aws/smarthome_demo]. The dashboard can be loaded automatically

embARC	DATASOURCE	5		
Load JSON File	Name	Last Updated		
Color Freeboard		never	c	â
L SAVE FREEBOARD	ADD			
+ ADD PANE		Modify DataSource		
+I	•			H

- 7. Click **ADD** to go to DATASOURCE page and fill the forms.
- a) TYPE: Choose AWS IoT.
- b) NAME: Name is aws.

DATASOURCE		
Receive data from an MQT	T server.	
TYPE	AWS IoT	
NAME	aws	
AWS IOT ENDPOINT	input_your_own_endpoint	
REGION	input_your_own_region	
CLIENT ID		
ACCESS KEY	input_your_own_accesskey	
SECRET KEY	input_your_own_secretKey	
THINGS	Thing	
	SmartHome 💼	
	ADD	
		SAVE CANCEL

c) AWS IOT ENDPOINT: Go to AWS IoT console and click your smart home node "SmartHome". Copy the content XXXXXXXXXXXXX.iot.us-east-1.amazonaws.com in REST API endpoint to AWS IOT ENDPOINT.

AWS	loT		Resource	s MQTT Client Tutorial	Settings 0 notifications
Recourse		AV		Learn more De	tail Update shadow Edit अ
nesource	:5	· cicale a resource		Name	SmartHome
8				REST API endpoint	
¥ Filter by resource	ce names o	r by resource type (belo	w)		t-1.amazonaws.com/things/SmartHo me/shadow
(All) 1/1 things 0/	0 rules	Select all	Actions +	MQTT topic	Saws/things/SmartHome/shadow/up date
0/0 CAs 1/1 certificates		First Previou	us 1 Next Last	Last update	No state 😂
0/0 policies				Attributes	None
Smart Home	9ce7e d7884 6bb ACTIV E			Linked certificates	None

- d) REGION: Copy the AWS region of your smart home node in REST API endpoint to RE-GION. For example, https://XXXXXXXXXXXXX.iot.us-eastl.amazonaws.com/things/ SmartHome/shadow. REGION is us-east-1.
- e) CLIENT ID: Leave it blank as default.
- f) ACCESS KEY and SECRET KEY: Go to AWS Services page and click IAM.

🎁 AWS 🗸 Services 🗸	Edit 🗸				
History	All AWS Services	P 1	IAM	🌷 Inspector	≝ Certificate Manager
🎁 Console Home	Compute	AWS Mana	AWS Identity and Access Management (IAM) lets you	Amazon Inspector enables you to analyze the behavior of the applications you run in AWS and helps you to identify potential security issues.	AWS Certificate Manager lets you easily provision, manage, and deploy Secure Sockets Layer/Transport Layer Security (SSL/TLS) certificates for use with AWS services.
🗣 IAM	Storage & Content Delivery	secur servio	rely control access to AWS ces and resources.		
🎁 Billing	Database		ſm		
🏥 AWS IoT	Networking	🇶 Directory Servic	Directory Service	I WAF	
	Developer Tools AWS Directory Service provide	Directory Service provides	AWS WAF (Web Application		
	Management Tools	ent Tools managed directories in the cloud. & Identity >	aged directories in the cloud.	Firewall) protects web applications from attack by providing web traffic filtering against common web exploits like SQL injection.	
	Security & Identity				
	Analytics				
	Internet of Things				
	Mobile Services				
	Application Services				
	Enterprise Applications				
	Game Development				

Go to user page and click **Create New Users**. Enter User Names **AWSIoTUser**. Then download user security credentials, Access Key ID, and Secret Access Key. Copy Access Key ID to ACCESS KEY and Secret Access Key to SECRET KEY.

Go to user page and click AWSIoTUser. Click Attach Policy to attach AWSIoTDataAccess to AWSIoTUser.

g) THINGS: AWS IoT thing name SmartHome.

THINGS	Thing	
	SmartHome	â
	ADD	

h) Click Save to finish the setting.

Building and Running AWS IoT Smart Home Example

1. The AWS IoT thing SDK for C has been ported to embARC. Check the above steps in order for your IoT application to work smoothly. Go to *embARC/example/freertos/iot/aws/smarthome_demo*. Modify aws_iot_config.h to match your AWS IoT configuration. The macro **AWS_IOT_MQTT_HOST** can be copied from the REST API endpoint in AWS IoT console. For example, https://XXXXXXXXXXXXXXX.iot.us-east-1.amazonaws.com/things/SmartHome/shadow. **AWS_IOT_MQTT_HOST** should be XXXXXXXXXXXX.iot.us-east-1.amazonaws.com.

// Get : // =====	rrom console ====================================	
#define	AWS_IOT_MQTT_HOST	"XXXXXXXXXXXXXXX.iot.us-east-1.amazonaws.com" ///< Cus
#define	AWS_IOT_MQTT_PORT	8883 ///< default port for MQTT/S
#define	AWS_IOT_MQTT_CLIENT_ID	"csdk-SH" ///< MQTT client ID should be unique for ev
#define	AWS_IOT_MY_THING_NAME	"SmartHome" ///< Thing Name of the Shadow this device
#define	AWS_IOT_ROOT_CA_FILENAME	"rootCA.crt" ///< Root CA file name
#define	AWS_IOT_CERTIFICATE_FILENAME	"cert.crt" ///< device signed certificate file name
#define	AWS_IOT_PRIVATE_KEY_FILENAME	"privateKey.pem" ///< Device private key filename
// =====		

- 2. Use USB cable to connect the EMSK board. Set the baud rate of the terminal emulator to 115200.
- 3. Insert the SD Card into the EMSK board SD Card slot. Run the AWS IoT application using JTAG. Go to *embARC/example/freertos/iot/aws/smarthome_demo* in command-line, run the following command:

make TOOLCHAIN=gnu BD_VER=22 CUR_CORE=arcem7d run

4. FreeRTOS-based runtime environment can be loaded automatically. Wait for WiFi initialization and connection establishment (30 seconds or less) until the "WiFi connected" message is displayed in the terminal emulator. "Network is ok" is displayed after the certificate files cert.crt, privateKey.pem, and rootCA.crt are validated. The information in "reported": {} is the state of the EMSK-based smart home node. "Updated Accepted !!" means the connection works between the smart home node and AWS IoT cloud.

5. Try out functions of EMSK and Dashboard. You can press the button L/R/X to see LED toggling on board, and the status of LEDs also changes on dashboard web app. You can also click the lights of *DESIRED STATUS* pane on the dashboard app, and check the reactions of LEDs status on board and dashboard web app.

Exercises

This application is designed to show how to connect only 1 EMSK and AWS IoT Cloud using embARC. Try to add more nodes and implement a Multi-nodes AWS IoT Smarthome Demo.

Note: You could find related demo codes [here]

CHAPTER 4

Appendix

4.1 Reference

- 1. Online docs
- 2. ARC EM Starter Kit Webpage
- 3. ARC IoT Development Kit Webpage
- 4. Github Repository of embARC Open Software Platform (OSP)

CHAPTER 5

Indices and tables

- genindex
- search